Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 8(1): 141, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040008

RESUMO

We report high resolution measurements of the stable isotope ratios of ancient ice (δ18O, δD) from the North Greenland Eemian deep ice core (NEEM, 77.45° N, 51.06° E). The record covers the period 8-130 ky b2k (y before 2000) with a temporal resolution of ≈0.5 and 7 y at the top and the bottom of the core respectively and contains important climate events such as the 8.2 ky event, the last glacial termination and a series of glacial stadials and interstadials. At its bottom part the record contains ice from the Eemian interglacial. Isotope ratios are calibrated on the SMOW/SLAP scale and reported on the GICC05 (Greenland Ice Core Chronology 2005) and AICC2012 (Antarctic Ice Core Chronology 2012) time scales interpolated accordingly. We also provide estimates for measurement precision and accuracy for both δ18O and δD.

3.
Nat Commun ; 9(1): 3537, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166550

RESUMO

Stable water isotope records from Antarctica are key for our understanding of Quaternary climate variations. However, the exact quantitative interpretation of these important climate proxy records in terms of surface temperature, ice sheet height and other climatic changes is still a matter of debate. Here we report results obtained with an atmospheric general circulation model equipped with water isotopes, run at a high-spatial horizontal resolution of one-by-one degree. Comparing different glacial maximum ice sheet reconstructions, a best model data match is achieved for the PMIP3 reconstruction. Reduced West Antarctic elevation changes between 400 and 800 m lead to further improved agreement with ice core data. Our modern and glacial climate simulations support the validity of the isotopic paleothermometer approach based on the use of present-day observations and reveal that a glacial ocean state as displayed in the GLAMAP reconstruction is suitable for capturing the observed glacial isotope changes in Antarctic ice cores.

5.
Nat Commun ; 9(1): 961, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511182

RESUMO

The δD temperature proxy in Antarctic ice cores varies in parallel with CO2 through glacial cycles. However, these variables display a puzzling asynchrony. Well-dated records of Southern Ocean temperature will provide crucial information because the Southern Ocean is likely key in regulating CO2 variations. Here, we perform multiple isotopic analyses on an Antarctic ice core and estimate temperature variations at this site and in the oceanic moisture source over the past 720,000 years, which extend the longest records by 300,000 years. Antarctic temperature is affected by large variations in local insolation that are induced by obliquity. At the obliquity periodicity, the Antarctic and ocean temperatures lag annual mean insolation. Further, the magnitude of the phase lag is minimal during low eccentricity periods, suggesting that secular changes in the global carbon cycle and the ocean circulation modulate the phase relationship among temperatures, CO2 and insolation in the obliquity frequency band.

7.
Front Physiol ; 8: 812, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29123486

RESUMO

Echoing scientific and industrial progress, the Twentieth century was an unprecedented period of improvement for human capabilities and performances, with a significant increase in lifespan, adult height, and maximal physiological performance. Analyses of historical data show a major slow down occurring in the most recent years. This triggered large and passionate debates in the academic scene within multiple disciplines; as such an observation could be interpreted as our upper biological limits. Such a new phase of human history may be related to structural and functional limits determined by long term evolutionary constraints, and the interaction between complex systems and their environment. In this interdisciplinary approach, we call into question the validity of subsequent forecasts and projections through innovative and related biomarkers such as sport, lifespan, and height indicators. We set a theoretical framework based on biological and environmental relevance rather than using a typical single-variable forecasting approach. As demonstrated within the article, these new views will have major social, economical, and political implications.

8.
Sci Rep ; 6: 32984, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27609585

RESUMO

In the Northern Hemisphere, most mountain glaciers experienced their largest extent in the last millennium during the Little Ice Age (1450 to 1850 CE, LIA), a period marked by colder hemispheric temperatures than the Medieval Climate Anomaly (950 to 1250 CE, MCA), a period which coincided with glacier retreat. Here, we present a new moraine chronology based on (36)Cl surface exposure dating from Lyngmarksbræen glacier, West Greenland. Consistent with other glaciers in the western Arctic, Lyngmarksbræen glacier experienced several advances during the last millennium, the first one at the end of the MCA, in ~1200 CE, was of similar amplitude to two other advances during the LIA. In the absence of any significant changes in accumulation records from South Greenland ice cores, we attribute this expansion to multi-decadal summer cooling likely driven by volcanic and/or solar forcing, and associated regional sea-ice feedbacks. Such regional multi-decadal cold conditions at the end of the MCA are neither resolved in temperature reconstructions from other parts of the Northern Hemisphere, nor captured in last millennium climate simulations.

9.
Nature ; 523(7558): 71-4, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26135450

RESUMO

The North Atlantic Oscillation (NAO) is the major source of variability in winter atmospheric circulation in the Northern Hemisphere, with large impacts on temperature, precipitation and storm tracks, and therefore also on strategic sectors such as insurance, renewable energy production, crop yields and water management. Recent developments in dynamical methods offer promise to improve seasonal NAO predictions, but assessing potential predictability on multi-annual timescales requires documentation of past low-frequency variability in the NAO. A recent bi-proxy NAO reconstruction spanning the past millennium suggested that long-lasting positive NAO conditions were established during medieval times, explaining the particularly warm conditions in Europe during this period; however, these conclusions are debated. Here, we present a yearly NAO reconstruction for the past millennium, based on an initial selection of 48 annually resolved proxy records distributed around the Atlantic Ocean and built through an ensemble of multivariate regressions. We validate the approach in six past-millennium climate simulations, and show that our reconstruction outperforms the bi-proxy index. The final reconstruction shows no persistent positive NAO during the medieval period, but suggests that positive phases were dominant during the thirteenth and fourteenth centuries. The reconstruction also reveals that a positive NAO emerges two years after strong volcanic eruptions, consistent with results obtained from models and satellite observations for the Mt Pinatubo eruption in the Philippines.


Assuntos
Clima , Modelos Teóricos , Oceano Atlântico
10.
Nat Commun ; 6: 6545, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25818017

RESUMO

While bidecadal climate variability has been evidenced in several North Atlantic paleoclimate records, its drivers remain poorly understood. Here we show that the subset of CMIP5 historical climate simulations that produce such bidecadal variability exhibits a robust synchronization, with a maximum in Atlantic Meridional Overturning Circulation (AMOC) 15 years after the 1963 Agung eruption. The mechanisms at play involve salinity advection from the Arctic and explain the timing of Great Salinity Anomalies observed in the 1970s and the 1990s. Simulations, as well as Greenland and Iceland paleoclimate records, indicate that coherent bidecadal cycles were excited following five Agung-like volcanic eruptions of the last millennium. Climate simulations and a conceptual model reveal that destructive interference caused by the Pinatubo 1991 eruption may have damped the observed decreasing trend of the AMOC in the 2000s. Our results imply a long-lasting climatic impact and predictability following the next Agung-like eruption.

11.
Science ; 345(6201): 1177-80, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25190795

RESUMO

Greenland ice core water isotopic composition (δ(18)O) provides detailed evidence for abrupt climate changes but is by itself insufficient for quantitative reconstruction of past temperatures and their spatial patterns. We investigate Greenland temperature evolution during the last deglaciation using independent reconstructions from three ice cores and simulations with a coupled ocean-atmosphere climate model. Contrary to the traditional δ(18)O interpretation, the Younger Dryas period was 4.5° ± 2°C warmer than the Oldest Dryas, due to increased carbon dioxide forcing and summer insolation. The magnitude of abrupt temperature changes is larger in central Greenland (9° to 14°C) than in the northwest (5° to 9°C), fingerprinting a North Atlantic origin. Simulated changes in temperature seasonality closely track changes in the Atlantic overturning strength and support the hypothesis that abrupt climate change is mostly a winter phenomenon.


Assuntos
Mudança Climática , Camada de Gelo , Temperatura , Simulação por Computador , Congelamento , Groenlândia , Modelos Teóricos , Isótopos de Oxigênio/análise
12.
PLoS One ; 8(12): e81648, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312568

RESUMO

We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur "slow" feedbacks and eventual warming of 3-4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.


Assuntos
Carbono/química , Mudança Climática , Responsabilidade Social , Animais , Planeta Terra , Ecossistema , Humanos , Políticas
13.
Science ; 321(5889): 680-4, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18566247

RESUMO

The last two abrupt warmings at the onset of our present warm interglacial period, interrupted by the Younger Dryas cooling event, were investigated at high temporal resolution from the North Greenland Ice Core Project ice core. The deuterium excess, a proxy of Greenland precipitation moisture source, switched mode within 1 to 3 years over these transitions and initiated a more gradual change (over 50 years) of the Greenland air temperature, as recorded by stable water isotopes. The onsets of both abrupt Greenland warmings were slightly preceded by decreasing Greenland dust deposition, reflecting the wetting of Asian deserts. A northern shift of the Intertropical Convergence Zone could be the trigger of these abrupt shifts of Northern Hemisphere atmospheric circulation, resulting in changes of 2 to 4 kelvin in Greenland moisture source temperature from one year to the next.

14.
Nature ; 453(7193): 383-6, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18480822

RESUMO

Atmospheric methane is an important greenhouse gas and a sensitive indicator of climate change and millennial-scale temperature variability. Its concentrations over the past 650,000 years have varied between approximately 350 and approximately 800 parts per 10(9) by volume (p.p.b.v.) during glacial and interglacial periods, respectively. In comparison, present-day methane levels of approximately 1,770 p.p.b.v. have been reported. Insights into the external forcing factors and internal feedbacks controlling atmospheric methane are essential for predicting the methane budget in a warmer world. Here we present a detailed atmospheric methane record from the EPICA Dome C ice core that extends the history of this greenhouse gas to 800,000 yr before present. The average time resolution of the new data is approximately 380 yr and permits the identification of orbital and millennial-scale features. Spectral analyses indicate that the long-term variability in atmospheric methane levels is dominated by approximately 100,000 yr glacial-interglacial cycles up to approximately 400,000 yr ago with an increasing contribution of the precessional component during the four more recent climatic cycles. We suggest that changes in the strength of tropical methane sources and sinks (wetlands, atmospheric oxidation), possibly influenced by changes in monsoon systems and the position of the intertropical convergence zone, controlled the atmospheric methane budget, with an additional source input during major terminations as the retreat of the northern ice sheet allowed higher methane emissions from extending periglacial wetlands. Millennial-scale changes in methane levels identified in our record as being associated with Antarctic isotope maxima events are indicative of ubiquitous millennial-scale temperature variability during the past eight glacial cycles.


Assuntos
Atmosfera/química , Metano/análise , Efeito Estufa , História Antiga , Camada de Gelo , Temperatura , Fatores de Tempo , Clima Tropical , Áreas Alagadas
15.
Anal Chem ; 79(12): 4603-12, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17503767

RESUMO

Interlaboratory comparisons involving nine European stable isotope laboratories have shown that the routine methods of cellulose preparation resulted in data that generally agreed within the precision of the isotope ratio mass spectrometry (IRMS) method used: +/-0.2 per thousand for carbon and +/-0.3 per thousand for oxygen. For carbon, the results suggest that holocellulose is enriched up to 0.39 per thousand in 13C relative to the purified alpha-cellulose. The comparisons of IRMS measurements of carbon on cellulose, sugars, and starches showed low deviations from -0.23 to +0.23 per thousand between laboratories. For oxygen, IRMS measurements varied between means from -0.39 to 0.58 per thousand, -0.89 to 0.42 per thousand, and -1.30 to 1.16 per thousand for celluloses, sugars, and starches, respectively. This can be explained by different effects arising from the use of low- or high-temperature pyrolysis and by the variation between laboratories in the procedures used for drying and storage of samples. The results of analyses of nonexchangeable hydrogen are very similar in means with standard deviations between individual methods from +/-2.7 to +/-4.9 per thousand. The use of a one-point calibration (IAEA-CH7) gave significant positive offsets in delta2H values up to 6 per thousand. Detailed analysis of the results allows us to make the following recommendations in order to increase quality and compatibility of the common data bank: (1) removal of a pretreatment with organic solvents, (2) a purification step with 17% sodium hydroxide solution during cellulose preparation procedure, (3) measurements of oxygen isotopes under an argon hood, (4) use of calibration standard materials, which are of similar nature to that of the measured samples, and (5) using a two-point calibration method for reliable result calculation.


Assuntos
Carboidratos/análise , Celulose/análise , Isótopos/análise , Espectrometria de Massas/métodos , Amido/análise , Madeira , Calibragem , Isótopos de Carbono/análise , Celulose/química , Deutério/análise , Compostos Orgânicos/química , Isótopos de Oxigênio/análise , Hidróxido de Sódio/química , Solventes/química , Temperatura
16.
Science ; 313(5790): 1043-5; author reply 1043-5, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16931738
17.
Science ; 310(5752): 1313-7, 2005 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-16311332

RESUMO

A record of atmospheric carbon dioxide (CO2) concentrations measured on the EPICA (European Project for Ice Coring in Antarctica) Dome Concordia ice core extends the Vostok CO2 record back to 650,000 years before the present (yr B.P.). Before 430,000 yr B.P., partial pressure of atmospheric CO2 lies within the range of 260 and 180 parts per million by volume. This range is almost 30% smaller than that of the last four glacial cycles; however, the apparent sensitivity between deuterium and CO2 remains stable throughout the six glacial cycles, suggesting that the relationship between CO2 and Antarctic climate remained rather constant over this interval.

18.
Science ; 310(5752): 1317-21, 2005 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-16311333

RESUMO

The European Project for Ice Coring in Antarctica Dome C ice core enables us to extend existing records of atmospheric methane (CH4) and nitrous oxide (N2O) back to 650,000 years before the present. A combined record of CH4 measured along the Dome C and the Vostok ice cores demonstrates, within the resolution of our measurements, that preindustrial concentrations over Antarctica have not exceeded 773 +/- 15 ppbv (parts per billion by volume) during the past 650,000 years. Before 420,000 years ago, when interglacials were cooler, maximum CH4 concentrations were only about 600 ppbv, similar to lower Holocene values. In contrast, the N2O record shows maximum concentrations of 278 +/- 7 ppbv, slightly higher than early Holocene values.

19.
Nature ; 429(6992): 623-8, 2004 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15190344

RESUMO

The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long--28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.

20.
Science ; 297(5588): 1862-4, 2002 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-12228715

RESUMO

The last deglaciation was marked by large, hemispheric, millennial-scale climate variations: the Bølling-Allerød and Younger Dryas periods in the north, and the Antarctic Cold Reversal in the south. A chronology from the high-accumulation Law Dome East Antarctic ice core constrains the relative timing of these two events and provides strong evidence that the cooling at the start of the Antarctic Cold Reversal did not follow the abrupt warming during the northern Bølling transition around 14,500 years ago. This result suggests that southern changes are not a direct response to abrupt changes in North Atlantic thermohaline circulation, as is assumed in the conventional picture of a hemispheric temperature seesaw.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA