Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 628(8006): 110-116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570715

RESUMO

The emergence of biopolymer building blocks is a crucial step during the origins of life1-6. However, all known formation pathways rely on rare pure feedstocks and demand successive purification and mixing steps to suppress unwanted side reactions and enable high product yields. Here we show that heat flows through thin, crack-like geo-compartments could have provided a widely available yet selective mechanism that separates more than 50 prebiotically relevant building blocks from complex mixtures of amino acids, nucleobases, nucleotides, polyphosphates and 2-aminoazoles. Using measured thermophoretic properties7,8, we numerically model and experimentally prove the advantageous effect of geological networks of interconnected cracks9,10 that purify the previously mixed compounds, boosting their concentration ratios by up to three orders of magnitude. The importance for prebiotic chemistry is shown by the dimerization of glycine11,12, in which the selective purification of trimetaphosphate (TMP)13,14 increased reaction yields by five orders of magnitude. The observed effect is robust under various crack sizes, pH values, solvents and temperatures. Our results demonstrate how geologically driven non-equilibria could have explored highly parallelized reaction conditions to foster prebiotic chemistry.


Assuntos
Biopolímeros , Evolução Química , Temperatura Alta , Origem da Vida , Biopolímeros/química , Dimerização , Glicina/química , Concentração de Íons de Hidrogênio , Nucleotídeos/química , Polifosfatos/química , Solventes/química
2.
J Am Chem Soc ; 146(13): 8887-8894, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38503430

RESUMO

Templated ligation offers an efficient approach to replicate long strands in an RNA world. The 2',3'-cyclic phosphate (>P) is a prebiotically available activation that also forms during RNA hydrolysis. Using gel electrophoresis and high-performance liquid chromatography, we found that the templated ligation of RNA with >P proceeds in simple low-salt aqueous solutions with 1 mM MgCl2 under alkaline pH ranging from 9 to 11 and temperatures from -20 to 25 °C. No additional catalysts were required. In contrast to previous reports, we found an increase in the number of canonical linkages to 50%. The reaction proceeds in a sequence-specific manner, with an experimentally determined ligation fidelity of 82% at the 3' end and 91% at the 5' end of the ligation site. With splinted oligomers, five ligations created a 96-mer strand, demonstrating a pathway for the ribozyme assembly. Due to the low salt requirements, the ligation conditions will be compatible with strand separation. Templated ligation mediated by 2',3'-cyclic phosphate in alkaline conditions therefore offers a performant replication and elongation reaction for RNA on early Earth.


Assuntos
RNA Catalítico , RNA , RNA/química , Fosfatos , RNA Catalítico/química , Temperatura , Cloreto de Sódio , Conformação de Ácido Nucleico
3.
Proc Natl Acad Sci U S A ; 120(43): e2218876120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37847736

RESUMO

The emergence of functional oligonucleotides on early Earth required a molecular selection mechanism to screen for specific sequences with prebiotic functions. Cyclic processes such as daily temperature oscillations were ubiquitous in this environment and could trigger oligonucleotide phase separation. Here, we propose sequence selection based on phase separation cycles realized through sedimentation in a system subjected to the feeding of oligonucleotides. Using theory and experiments with DNA, we show sequence-specific enrichment in the sedimented dense phase, in particular of short 22-mer DNA sequences. The underlying mechanism selects for complementarity, as it enriches sequences that tightly interact in the dense phase through base-pairing. Our mechanism also enables initially weakly biased pools to enhance their sequence bias or to replace the previously most abundant sequences as the cycles progress. Our findings provide an example of a selection mechanism that may have eased screening for auto-catalytic self-replicating oligonucleotides.


Assuntos
DNA , Oligonucleotídeos , Oligonucleotídeos/genética , DNA/genética , Temperatura , Pareamento de Bases
4.
Phys Rev Lett ; 130(16): 168202, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154655

RESUMO

We measure the thermophoresis of polysterene beads over a wide range of temperature gradients and find a pronounced nonlinear phoretic characteristic. The transition to the nonlinear behavior is marked by a drastic slowing down of thermophoretic motion and is characterized by a Péclet number of order unity as corroborated for different particle sizes and salt concentrations. The data follow a single master curve covering the entire nonlinear regime for all system parameters upon proper rescaling of the temperature gradients with the Péclet number. For low thermal gradients, the thermal drift velocity follows a theoretical linear model relying on the local-equilibrium assumption, while linear theoretical approaches based on hydrodynamic stresses, ignoring fluctuations, predict significantly slower thermophoretic motion for steeper thermal gradients. Our findings suggest that thermophoresis is fluctuation dominated for small gradients and crosses over to a drift-dominated regime for larger Péclet numbers in striking contrast to electrophoresis.

5.
Sci Rep ; 13(1): 2638, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788271

RESUMO

Understanding the sequence-dependent DNA damage formation requires probing a complete pool of sequences over a wide dose range of the damage-causing exposure. We used high throughput sequencing to simultaneously obtain the dose dependence and quantum yields for oligonucleotide damages for all possible 4096 DNA sequences with hexamer length. We exposed the DNA to ultraviolet radiation at 266 nm and doses of up to 500 absorbed photons per base. At the dimer level, our results confirm existing literature values of photodamage, whereas we now quantified the susceptibility of sequence motifs to UV irradiation up to previously inaccessible polymer lengths. This revealed the protective effect of the sequence context in preventing the formation of UV-lesions. For example, the rate to form dipyrimidine lesions is strongly reduced by nearby guanine bases. Our results provide a complete picture of the sensitivity of oligonucleotides to UV irradiation and allow us to predict their abundance in high-UV environments.


Assuntos
Oligonucleotídeos , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Oligonucleotídeos/genética , Dano ao DNA , Dímeros de Pirimidina , DNA
6.
Phys Chem Chem Phys ; 25(4): 3375-3386, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36633199

RESUMO

Life is based on informational polymers such as DNA or RNA. For their polymerization, high concentrations of complex monomer building blocks are required. Therefore, the dilution by diffusion poses a major problem before early life could establish a non-equilibrium of compartmentalization. Here, we explored a natural non-equilibrium habitat to polymerize RNA and DNA. A heat flux across thin rock cracks is shown to accumulate and maintain nucleotides. This boosts the polymerization to RNA and DNA inside the crack. Moreover, the polymers remain localized, aiding both the creation of longer polymers and fostering downstream evolutionary steps. In a closed system, we found single nucleotides concentrate 104-fold at the bottom of the crack compared to the top after 24 hours. We detected enhanced polymerization for 2 different activation chemistries: aminoimidazole-activated DNA nucleotides and 2',3'-cyclic RNA nucleotides. The copolymerization of 2',3'-cGMP and 2',3'-cCMP in the thermal pore showed an increased heterogeneity in sequence composition compared to isothermal drying. Finite element models unravelled the combined polymerization and accumulation kinetics and indicated that the escape of the nucleotides from such a crack is negligible over a time span of years. The thermal non-equilibrium habitat establishes a cell-like compartment that actively accumulates nucleotides for polymerization and traps the resulting oligomers. We argue that the setting creates a pre-cellular non-equilibrium steady state for the first steps of molecular evolution.


Assuntos
Temperatura Alta , RNA , Nucleotídeos , DNA , Polímeros
7.
Chembiochem ; 23(24): e202200423, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36354762

RESUMO

When water interacts with porous rocks, its wetting and surface tension properties create air bubbles in large number. To probe their relevance as a setting for the emergence of life, we microfluidically created foams that were stabilized with lipids. A persistent non-equilibrium setting was provided by a thermal gradient. The foam's large surface area triggers capillary flows and wet-dry reactions that accumulate, aggregate and oligomerize RNA, offering a compelling habitat for RNA-based early life as it offers both wet and dry conditions in direct neighborhood. Lipids were screened to stabilize the foams. The prebiotically more probable myristic acid stabilized foams over many hours. The capillary flow created by the evaporation at the water-air interface provided an attractive force for molecule localization and selection for molecule size. For example, self-binding oligonucleotide sequences accumulated and formed micrometer-sized aggregates which were shuttled between gas bubbles. The wet-dry cycles at the foam bubble interfaces triggered a non-enzymatic RNA oligomerization from 2',3'-cyclic CMP and GMP which despite the small dry reaction volume was superior to the corresponding dry reaction. The found characteristics make heated foams an interesting, localized setting for early molecular evolution.


Assuntos
Prebióticos , RNA , Propriedades de Superfície , Água/química , Lipídeos
8.
Nat Chem ; 14(1): 32-39, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34873298

RESUMO

Key requirements for the first cells on Earth include the ability to compartmentalize and evolve. Compartmentalization spatially localizes biomolecules from a dilute pool and an evolving cell, which, as it grows and divides, permits mixing and propagation of information to daughter cells. Complex coacervate microdroplets are excellent candidates as primordial cells with the ability to partition and concentrate molecules into their core and support primitive and complex biochemical reactions. However, the evolution of coacervate protocells by fusion, growth and fission has not yet been demonstrated. In this work, a primordial environment initiated the evolution of coacervate-based protocells. Gas bubbles inside heated rock pores perturb the coacervate protocell distribution and drive the growth, fusion, division and selection of coacervate microdroplets. Our findings provide a compelling scenario for the evolution of membrane-free coacervate microdroplets on the early Earth, induced by common gas bubbles within heated rock pores.

9.
Phys Rev Lett ; 125(4): 048104, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32794805

RESUMO

The RNA world scenario posits replication by RNA polymerases. On early Earth, a geophysical setting is required to separate hybridized strands after their replication and to localize them against diffusion. We present a pointed heat source that drives exponential, RNA-catalyzed amplification of short RNA with high efficiency in a confined chamber. While shorter strands were periodically melted by laminar convection, the temperature gradient caused aggregated polymerase molecules to accumulate, protecting them from degradation in hot regions of the chamber. These findings demonstrate a size-selective pathway for autonomous RNA-based replication in natural nonequilibrium conditions.


Assuntos
Ecossistema , RNA/química , RNA/genética , Catálise , DNA/química , DNA/genética , DNA/metabolismo , Replicação do DNA , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Planeta Terra , Evolução Molecular , Temperatura Alta , Biossíntese de Proteínas/genética , RNA/metabolismo
10.
Angew Chem Int Ed Engl ; 58(37): 13155-13160, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31322800

RESUMO

To understand the emergence of life, a better understanding of the physical chemistry of primordial non-equilibrium conditions is essential. Significant salt concentrations are required for the catalytic function of RNA. The separation of oligonucleotides into single strands is a difficult problem as the hydrolysis of RNA becomes a limiting factor at high temperatures. Salt concentrations modulate the melting of DNA or RNA, and its periodic modulation would enable melting and annealing cycles at low temperatures. In our experiments, a moderate temperature difference created a miniaturized water cycle, resulting in fluctuations in salt concentration, leading to melting of oligonucleotides at temperatures 20 °C below the melting temperature. This would enable the reshuffling of duplex oligonucleotides, necessary for ligation chain replication. The findings suggest an autonomous route to overcome the strand-separation problem of non-enzymatic replication in early evolution.

11.
Nat Chem ; 11(9): 779-788, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31358919

RESUMO

Non-equilibrium conditions must have been crucial for the assembly of the first informational polymers of early life, by supporting their formation and continuous enrichment in a long-lasting environment. Here, we explore how gas bubbles in water subjected to a thermal gradient, a likely scenario within crustal mafic rocks on the early Earth, drive a complex, continuous enrichment of prebiotic molecules. RNA precursors, monomers, active ribozymes, oligonucleotides and lipids are shown to (1) cycle between dry and wet states, enabling the central step of RNA phosphorylation, (2) accumulate at the gas-water interface to drastically increase ribozymatic activity, (3) condense into hydrogels, (4) form pure crystals and (5) encapsulate into protecting vesicle aggregates that subsequently undergo fission. These effects occur within less than 30 min. The findings unite, in one location, the physical conditions that were crucial for the chemical emergence of biopolymers. They suggest that heated microbubbles could have hosted the first cycles of molecular evolution.


Assuntos
Gases/química , Lipídeos/química , Oligonucleotídeos/química , RNA Catalítico/química , RNA/química , Cristalização , Gases/síntese química , Hidrogéis/síntese química , Hidrogéis/química , Fosforilação , Água/química
12.
Nat Commun ; 8(1): 1897, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196673

RESUMO

Proton gradients are essential for biological systems. They not only drive the synthesis of ATP, but initiate molecule degradation and recycling inside lysosomes. However, the high mobility and permeability of protons through membranes make pH gradients very hard to sustain in vitro. Here we report that heat flow across a water-filled chamber forms and sustains stable pH gradients. Charged molecules accumulate by convection and thermophoresis better than uncharged species. In a dissociation reaction, this imbalances the reaction equilibrium and creates a difference in pH. In solutions of amino acids, phosphate, or nucleotides, we achieve pH differences of up to 2 pH units. The same mechanism cycles biomolecules by convection in the created proton gradient. This implements a feedback between biomolecules and a cyclic variation of the pH. The finding provides a mechanism to create a self-sustained proton gradient to drive biochemical reactions.

13.
Angew Chem Int Ed Engl ; 55(23): 6676-9, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27060490

RESUMO

DNA phase transitions are often induced by the addition of condensation agents or by dry concentration. Herein, we show that the non-equilibrium setting of a moderate heat flow across a water-filled chamber separates and gelates DNA strands with single-base resolution. A dilute mix of DNA with two slightly different gel-forming sequences separates into sequence-pure hydrogels under constant physiological solvent conditions. A single base change in a 36 mer DNA inhibits gelation. Only sequences with the ability to form longer strands are concentrated, further elongated, and finally gelated by length-dependent thermal trapping. No condensation agents, such as multivalent ions, were added. Equilibrium aggregates from dry concentration did not show any sequence separation. RNA is expected to behave identically owing to its equal thermophoretic properties. The highly sequence-specific phase transition points towards new possibilities for non-equilibrium origins of life.

14.
Chembiochem ; 15(6): 879-83, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24578245

RESUMO

Recent progress in the synthesis of nucleotides from prebiotically plausible precursors has opened up new ways to explain the origin of genetic matter. Mechanisms for the polymerization of nucleotides without the help of catalysts are, however, rare. Complementary to the experiments done by Costanzo et al., we found that drying 3',5'-cyclic GMP leads to poly-G RNA strands with lengths of up to 40 nucleotides. We also show that the polymerization to long RNA strands is considerably more efficient under dry conditions than for cGMP polymerization in water. The length depends on the incubation time of dry nucleotides at temperatures of 40-80 °C. No enzymes or other catalysts are needed for successful polymerization.


Assuntos
GMP Cíclico/metabolismo , RNA/metabolismo , Polimerização , RNA/química , Ribonuclease T1/metabolismo , Temperatura , Água/química
15.
Proc Natl Acad Sci U S A ; 110(20): 8030-5, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23630280

RESUMO

For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10(600) compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers.


Assuntos
Biopolímeros/química , Polimerização , RNA Catalítico/química , RNA/química , Calibragem , Catálise , DNA/química , Transferência Ressonante de Energia de Fluorescência , Geologia/métodos , Cinética , Modelos Estatísticos , Nucleotídeos/química , Temperatura , Água/química
16.
Phys Chem Chem Phys ; 13(21): 9918-28, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21240434

RESUMO

A long standing goal is the direct optical control of biomolecules and water for applications ranging from microfluidics over biomolecule detection to non-equilibrium biophysics. Thermal forces originating from optically applied, dynamic microscale temperature gradients have shown to possess great potential to reach this goal. It was demonstrated that laser heating by a few Kelvin can generate and guide water flow on the micrometre scale in bulk fluid, gel matrices or ice without requiring any lithographic structuring. Biomolecules on the other hand can be transported by thermal gradients, a mechanism termed thermophoresis, thermal diffusion or Soret effect. This molecule transport is the subject of current research, however it can be used to both characterize biomolecules and to record binding curves of important biological binding reactions, even in their native matrix of blood serum. Interestingly, thermophoresis can be easily combined with the optothermal fluid control. As a result, molecule traps can be created in a variety of geometries, enabling the trapping of small biomolecules, like for example very short DNA molecules. The combination with DNA replication from thermal convection allows us to approach molecular evolution with concurrent replication and selection processes inside a single chamber: replication is driven by thermal convection and selection by the concurrent accumulation of the DNA molecules. From the short but intense history of applying thermal fields to control fluid flow and biological molecules, we infer that many unexpected and highly synergistic effects and applications are likely to be explored in the future.


Assuntos
DNA/química , Microfluídica/métodos , Óptica e Fotônica/métodos , Água/química , Difusão , Hidrodinâmica , Luz , Microfluídica/instrumentação , Microfluídica/tendências , Óptica e Fotônica/instrumentação , Óptica e Fotônica/tendências , Temperatura
17.
Phys Rev Lett ; 104(18): 188102, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20482214

RESUMO

The hallmark of living matter is the replication of genetic molecules and their active storage against diffusion. We implement both in the simple nonequilibrium environment of a temperature gradient. Convective flow both drives the DNA replicating polymerase chain reaction while concurrent thermophoresis accumulates the replicated 143 base pair DNA in bulk solution. The time constant for accumulation is 92 s while DNA is doubled every 50 s. The experiments explore conditions in pores of hydrothermal rock which can serve as a model environment for the origin of life.


Assuntos
Replicação do DNA/genética , DNA/química , DNA/genética , Temperatura Alta , Modelos Químicos , Modelos Genéticos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA