Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(6): 1104-1114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781979
2.
Int J Med Microbiol ; 315: 151620, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579524

RESUMO

Staphylococcus epidermidis is part of the commensal microbiota of the skin and mucous membranes, though it can also act as a pathogen in certain scenarios, causing a range of infections, including periprosthetic joint infection (PJI). Transcriptomic profiling may provide insights into mechanisms by which S. epidermidis adapts while in a pathogenic compared to a commensal state. Here, a total RNA-sequencing approach was used to profile and compare the transcriptomes of 19 paired PJI-associated S. epidermidis samples from an in vivo clinical source and grown in in vitro laboratory culture. Genomic comparison of PJI-associated and publicly available commensal-state isolates were also compared. Of the 1919 total transcripts found, 145 were from differentially expressed genes (DEGs) when comparing in vivo or in vitro samples. Forty-two transcripts were upregulated and 103 downregulated in in vivo samples. Of note, metal sequestration-associated genes, specifically those related to staphylopine activity (cntA, cntK, cntL, and cntM), were upregulated in a subset of clinical in vivo compared to laboratory grown in vitro samples. About 70% of the total transcripts and almost 50% of the DEGs identified have not yet been annotated. There were no significant genomic differences between known commensal and PJI-associated S. epidermidis isolates, suggesting that differential genomics may not play a role in S. epidermidis pathogenicity. In conclusion, this study provides insights into phenotypic alterations employed by S epidermidis to adapt to infective and non-infected microenvironments, potentially informing future therapeutic targets for related infections.


Assuntos
Perfilação da Expressão Gênica , Infecções Relacionadas à Prótese , Infecções Estafilocócicas , Staphylococcus epidermidis , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/patogenicidade , Staphylococcus epidermidis/isolamento & purificação , Infecções Relacionadas à Prótese/microbiologia , Humanos , Infecções Estafilocócicas/microbiologia , Feminino , Masculino , Idoso , Transcriptoma , Regulação Bacteriana da Expressão Gênica , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais
3.
J Bone Joint Surg Am ; 105(1): 63-73, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36574631

RESUMO

BACKGROUND: Although cellularity is traditionally assessed morphologically, deep sequencing approaches being used for microorganism detection may be able to provide information about cellularity. We hypothesized that cellularity predicted using CIBERSORTx (Stanford University), a transcriptomic-based cellular deconvolution tool, would differentiate between infectious and non-infectious arthroplasty failure. METHODS: CIBERSORTx-derived cellularity profiles of 93 sonicate fluid samples, including 53 from subjects who underwent failed arthroplasties due to periprosthetic joint infection (PJI) (abbreviated for the purpose of this study as PJIF) and 40 from subjects who had undergone non-infectious arthroplasty failure (abbreviated NIAF) that had been subjected to bulk RNA sequencing were evaluated. RESULTS: Samples from PJIF and NIAF subjects were differentially clustered by principal component analysis based on the cellularity profile. Twelve of the 22 individual predicted cellular fractions were differentially expressed in the PJIF cases compared with the NIAF cases, including increased predicted neutrophils (mean and standard error, 9.73% ± 1.06% and 0.81% ± 0.60%), activated mast cells (17.12% ± 1.51% and 4.11% ± 0.44%), and eosinophils (1.96% ± 0.37% and 0.42% ± 0.21%), and decreased predicted M0 macrophages (21.33% ± 1.51% and 39.75% ± 2.45%), M2 macrophages (3.56% ± 0.52% and 8.70% ± 1.08%), and regulatory T cells (1.57% ± 0.23% and 3.20% ± 0.34%). The predicted total granulocyte fraction was elevated in the PJIF cases (32.97% ± 2.13% and 11.76% ± 1.61%), and the samples from the NIAF cases had elevated predicted total macrophage and monocyte (34.71% ± 1.71% and 55.34% ± 2.37%) and total B cell fractions (5.89% ± 0.30% and 8.62% ± 0.86%). Receiver operating characteristic curve analysis identified predicted total granulocytes, neutrophils, and activated mast cells as highly able to differentiate between the PJIF cases and the NIAF cases. Within the PJIF cases, the total granulocyte, total macrophage and monocyte, M0 macrophage, and M2 macrophage fractions were differentially expressed in Staphylococcus aureus compared with Staphylococcus epidermidis -associated samples. Within the NIAF cases, the predicted total B cell, naïve B cell, plasma cell, and M2 macrophage fractions were differentially expressed among different causes of failure. CONCLUSIONS: CIBERSORTx can predict the cellularity of sonicate fluid using transcriptomic data, allowing for the evaluation of the underlying immune response during the PJIF and NIAF cases, without a need to phenotypically assess cell composition.


Assuntos
Artrite Infecciosa , Infecções Relacionadas à Prótese , Humanos , Transcriptoma , Infecções Relacionadas à Prótese/diagnóstico , Artroplastia , Artrite Infecciosa/diagnóstico , Curva ROC
4.
Gene ; 825: 146400, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35306116

RESUMO

Periprosthetic joint infection (PJI), a devastating complication of total joint replacement, is of incompletely understood pathogenesis and may sometimes be challenging to clinically distinguish from other causes of arthroplasty failure. We characterized human gene expression in 93 specimens derived from surfaces of resected arthroplasties, comparing transcriptomes of subjects with infection- versus non-infection-associated arthroplasty failure. Differential gene expression analysis confirmed 28 previously reported potential biomarkers of PJI, including bactericidal/permeability increasing protein (BPI), cathelicidin antimicrobial peptide (CAMP), C-C-motif chemokine ligand 3 (CCL3), 4(CCL4) and C-X-C-motif chemokine ligand 2 (CXCL2), colony stimulating factor 2 receptor beta (CSF2RB), colony stimulating factor 3 (CSF3), alpha-defensin (DEFA4), Fc fragment of IgG receptor 1B (CD64B), intercellular adhesion molecule 1 (ICAM1), interferon gamma (IFNG), interleukin 13 receptor subunit alpha 2 (IL13RA2), interleukin 17D (IL17D), interleukin 1 (IL1A, IL1B, IL1RN), interleukin 2 receptors (IL2RA, IL2RG), interleukin 5 receptor (IL5RA), interleukin 6 (IL6), interleukin 8 (IL8), lipopolysaccharide binding protein (LBP), lipocalin (LCN2), lactate dehydrogenase C (LDHC), lactotransferrin (LTF), matrix metallopeptidase 3 (MMP3), peptidase inhibitor 3 (PI3), and vascular endothelial growth factor A (VEGFA), and identified three novel molecules of potential diagnostic use for detection of PJI, namely C-C-motif chemokine ligand CCL20, coagulation factor VII (F7), and B cell receptor FCRL4. Comparative analysis of infections caused by staphylococci versus bacteria other than staphylococci and Staphylococcus aureus versus Staphylococcus epidermidis showed elevated expression of interleukin 13 (IL13), IL17D, and MMP3 in staphylococcal infections, and of IL1B, IL8, and platelet factor PF4V1 in S. aureus compared to S. epidermidis infections. Pathway analysis of over-represented genes suggested activation of host immune response and cellular maintenance and repair functions in response to invasion of infectious agents. The data presented provides new potential targets for diagnosis of PJI and for differentiation of PJI caused by different infectious agents.


Assuntos
Artrite Infecciosa , Infecções Relacionadas à Prótese , Infecções Estafilocócicas , Artrite Infecciosa/diagnóstico , Artrite Infecciosa/metabolismo , Artrite Infecciosa/microbiologia , Biomarcadores/análise , Fatores Estimuladores de Colônias , Humanos , Interleucina-8 , Ligantes , Metaloproteinase 3 da Matriz/metabolismo , Infecções Relacionadas à Prótese/diagnóstico , Infecções Relacionadas à Prótese/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Líquido Sinovial/metabolismo , Transcriptoma , Fator A de Crescimento do Endotélio Vascular
5.
Microbiologyopen ; 10(6): e1256, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34964296

RESUMO

Although Streptococcus agalactiae periprosthetic joint infection (PJI) is not as prevalent as staphylococcal PJI, invasive S. agalactiae infection is not uncommon. Here, RNA-seq was used to perform transcriptomic analysis of S. agalactiae PJI using fluid derived from sonication of explanted arthroplasties of subjects with S. agalactiae PJI, with results compared to those of S. agalactiae strain NEM316 grown in vitro. A total of 227 genes with outlier expression were found (164 upregulated and 63 downregulated) between PJI sonicate fluid and in vitro conditions. Functional enrichment analysis showed genes involved in mobilome and inorganic ion transport and metabolism to be most enriched. Genes involved in nickel, copper, and zinc transport, were upregulated. Among known virulence factors, cyl operon genes, encoding ß-hemolysin/cytolysin, were consistently highly expressed in PJI versus in vitro. The data presented provide insight into S. agalactiae PJI pathogenesis and may be a resource for identification of novel PJI therapeutics or vaccines against invasive S. agalactiae infections.


Assuntos
Prótese Articular/efeitos adversos , Infecções Relacionadas à Prótese/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/genética , Transcriptoma , Adulto , Idoso , Aderência Bacteriana/genética , Biofilmes/crescimento & desenvolvimento , Feminino , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genoma Bacteriano , Humanos , Masculino , Pessoa de Meia-Idade , RNA-Seq , Streptococcus agalactiae/patogenicidade , Streptococcus agalactiae/fisiologia , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
6.
ACS Omega ; 6(39): 25642-25651, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34632220

RESUMO

Whole genome sequencing is emerging as a promising tool for the untargeted detection of a broad range of microbial species for diagnosis and analysis. However, it is logistically challenging to perform the multistep process from sample preparation to DNA amplification to sequencing and analysis within a short turnaround time. To address this challenge, we developed a digital microfluidic device for rapid whole genome amplification of low-abundance bacterial DNA and compared results with conventional in-tube DNA amplification. In this work, we chose Corynebacterium glutamicum DNA as a bacterial target for method development and optimization, as it is not a common contaminant. Sequencing was performed in a hand-held Oxford Nanopore Technologies MinION sequencer. Our results show that using an in-tube amplification approach, at least 1 pg starting DNA is needed to reach the amount required for successful sequencing within 2 h. While using a digital microfluidic device, it is possible to amplify as low as 10 fg of C. glutamicum DNA (equivalent to the amount of DNA within a single bacterial cell) within 2 h and to identify the target bacterium within 30 min of MinION sequencing-100× lower than the detection limit of an in-tube amplification approach. We demonstrate the detection of C. glutamicum DNA in a mock community DNA sample and characterize the limit of bacterial detection in the presence of human cells. This approach can be used to identify microbes with minute amounts of genetic material in samples depleted of human cells within 3 h.

7.
J Mol Diagn ; 23(8): 986-999, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34098085

RESUMO

Transcriptomic analysis can provide insight as to how Staphylococcus aureus adapts to the environmental niche of periprosthetic joint infection (PJI), a challenging clinical infection. Here, in vivo RNA expression of eight S. aureus PJIs was compared with expression of the corresponding isolates in planktonic culture using a total RNA-sequencing approach. Expression varied among isolates, with a common trend showing increased expression of several ica-independent biofilm formation genes, including sdr, fnb, ebpS, and aaa; genes encoding enzymes and toxins, including coa, nuc, hlb, and hlgA/B/C; and genes facilitating acquisition of iron via the iron-binding molecule siderophore B (snb) and heme consumption protein (isd) pathways in PJI. Several antimicrobial resistance determinants were detected; although their presence correlated with phenotypic susceptibility of the associated isolates, no difference in expression between in vivo and in vitro conditions was identified.


Assuntos
Artrite Infecciosa/diagnóstico , Artrite Infecciosa/etiologia , Perfilação da Expressão Gênica/métodos , Infecções Relacionadas à Prótese/diagnóstico , Infecções Relacionadas à Prótese/etiologia , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Biofilmes , Suscetibilidade a Doenças , Farmacorresistência Bacteriana/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Genômica/métodos , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , RNA Bacteriano , Reação em Cadeia da Polimerase em Tempo Real/métodos , Staphylococcus aureus/genética
9.
J Arthroplasty ; 35(4): 1123-1129, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31852609

RESUMO

BACKGROUND: The aims of this study were to determine the levels of cobalt (Co) and chromium (Cr) ions generated in simulators from metal-on-polyethylene (MoP) and ceramic-on-polyethylene (CoP) constructs. Furthermore, we aimed to investigate the cytotoxic effect of these ion levels on native tissues and their potential to modify periprosthetic joint infection risk. METHODS: We used in vitro culture of human adipose-derived mesenchymal stem cells (AMSCs) and Staphylococcus epidermidis cultures, respectively. Ten hip simulator constructs (5 MoP and 5 CoP) were assembled and run for 1,000,000 cycles in bovine serum and evaluated for CoCr concentration. Cytotoxicity and growth impact on AMSCs and S. epidermidis was compared between CoCr and inert silicon dioxide. RESULTS: After 1,000,000 cycles, mean MoP and CoP Co concentration was 2264 and 0.6 ng/mL, respectively (P < .001). Mean MoP and CoP Cr concentration was 217 and 4.3 ng/mL, respectively (P < .001). Mean MoP Co:Cr ratio was 10:1. Co ions were significantly more toxic to human AMSCs than control silicon dioxide in a dose-response manner (P < .001). S. epidermidis growth was not significantly impacted by Co concentrations observed in the simulators. CONCLUSION: MoP constructs built in ideal conditions generated substantial CoCr debris, highlighting a baseline risk with these implants that may be exacerbated by host factors or imperfect surgical technique. Evaluation of impact on AMSCs suggests that debris levels produced under simulator conditions can be cytotoxic. In addition, these concentrations did not potentiate or inhibit S. epidermidis growth, suggesting that elevated periprosthetic joint infection rates with adverse local tissue reaction are related to other factors potentially associated with tissue necrosis.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Animais , Artroplastia de Quadril/efeitos adversos , Bovinos , Cerâmica , Cromo , Cobalto , Prótese de Quadril/efeitos adversos , Humanos , Íons , Polietileno , Desenho de Prótese
10.
Microbiology (Reading) ; 162(11): 2005-2016, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27590250

RESUMO

Regulation of the Neisseria gonorrhoeae pilE gene is ill-defined. In this study, post-transcriptional effects on expression were assessed. In silico analysis predicts the formation of three putative stable stem-loop structures with favourable free energies within the 5' untranslated region of the pilE message. Using quantitative reverse transcriptase PCR analyses, we show that each loop structure forms, with introduced destabilizing stem-loop mutations diminishing loop stability. Utilizing a series of pilE translational fusions, deletion of either loop 1 or loop 2 caused a significant reduction of pilE mRNA resulting in reduced expression of the reporter gene. Consequently, the formation of the loops apparently protects the pilE transcript from degradation. Putative loop 3 contains the pilE ribosomal binding site. Consequently, its formation may influence translation. Analysis of a small RNA transcriptome revealed an antisense RNA being produced upstream of the pilE promoter that is predicted to hybridize across the 5' untranslated region loops. Insertional mutants were created where the antisense RNA is not transcribed. In these mutants, pilE transcript levels are greatly diminished, with any residual message apparently not being translated. Complementation of these insertion mutants in trans with the antisense RNA gene facilitates pilE translation yielding a pilus + phenotype. Overall, this study demonstrates a complex relationship between loop-dependent transcript protection and antisense RNA in modulating pilE expression levels.


Assuntos
Regiões 5' não Traduzidas , Proteínas de Fímbrias/genética , Regulação Bacteriana da Expressão Gênica , Neisseria gonorrhoeae/metabolismo , RNA Antissenso/química , RNA Antissenso/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Sequências Repetidas Invertidas , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/genética , Conformação de Ácido Nucleico , RNA Antissenso/genética , RNA Bacteriano/genética
11.
Microbiology (Reading) ; 162(1): 177-190, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26475082

RESUMO

Initially, pilE transcription in Neisseria gonorrhoeae appeared to be complicated, yet it was eventually simplified into a model where integration host factor activates a single -35/ -10 promoter. However, with the advent of high-throughput RNA sequencing, numerous small pil-specific RNAs (sense as well as antisense) have been identified at the pilE locus as well as at various pilS loci. Using a combination of in vitro transcription, site-directed mutagenesis, Northern analysis and quantitative reverse transcriptase PCR (qRT-PCR) analysis, we have identified three additional non-canonical promoter elements within the pilE gene; two are located within the midgene region (one sense and one antisense), with the third, an antisense promoter, located immediately downstream of the pilE ORF. Using strand-specific qRT-PCR analysis, an inverse correlation exists between the level of antisense expression and the amount of sense message. By their nature, promoter sequences tend to be AT-rich. In Escherichia coli, the small DNA-binding protein H-NS binds to AT-rich sequences and inhibits intragenic transcription. In N. gonorrhoeae hns mutants, pilE antisense transcription was increased twofold, with a concomitant decrease in sense transcript levels. However, most noticeably in these mutants, the absence of H-NS protein caused pilE/pilS recombination to increase dramatically when compared with WT values. Consequently, H-NS protein suppresses pilE intragenic transcription as well as antigenic variation through the pilE/pilS recombination system.


Assuntos
Variação Antigênica , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/imunologia , Neisseria gonorrhoeae/genética , Proteínas de Bactérias/imunologia , Sequência de Bases , Proteínas de Ligação a DNA/imunologia , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/imunologia , Regiões Promotoras Genéticas , Recombinação Genética , Alinhamento de Sequência , Transcrição Gênica
12.
Microb Cell ; 3(9): 371-389, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28357376

RESUMO

Etiology, transmission and protection: Neisseria gonorrhoeae (the gonococcus) is the etiological agent for the strictly human sexually transmitted disease gonorrhea. Infections lead to limited immunity, therefore individuals can become repeatedly infected. Pathology/symptomatology: Gonorrhea is generally a non-complicated mucosal infection with a pustular discharge. More severe sequellae include salpingitis and pelvic inflammatory disease which may lead to sterility and/or ectopic pregnancy. Occasionally, the organism can disseminate as a bloodstream infection. Epidemiology, incidence and prevalence: Gonorrhea is a global disease infecting approximately 60 million people annually. In the United States there are approximately 300, 000 cases each year, with an incidence of approximately 100 cases per 100,000 population. Treatment and curability: Gonorrhea is susceptible to an array of antibiotics. Antibiotic resistance is becoming a major problem and there are fears that the gonococcus will become the next "superbug" as the antibiotic arsenal diminishes. Currently, third generation extended-spectrum cephalosporins are being prescribed. Molecular mechanisms of infection: Gonococci elaborate numerous strategies to thwart the immune system. The organism engages in extensive phase (on/off switching) and antigenic variation of several surface antigens. The organism expresses IgA protease which cleaves mucosal antibody. The organism can become serum resistant due to its ability to sialylate lipooligosaccharide in conjunction with its ability to subvert complement activation. The gonococcus can survive within neutrophils as well as in several other lymphocytic cells. The organism manipulates the immune response such that no immune memory is generated which leads to a lack of protective immunity.

13.
Microbiology (Reading) ; 161(Pt 5): 1124-1135, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25701734

RESUMO

Piliation is an important virulence determinant for Neisseria gonorrhoeae. PilE polypeptide is the major protein subunit in the pilus organelle and engages in extensive antigenic variation due to recombination between pilE and a pilS locus. pilS were so-named as they are believed to be transcriptionally silent, in contrast to the pilE locus. In this study, we demonstrate the presence of a small, pil-specific RNA species. Through using a series of pilE deletion mutants, we show by Northern blotting and quantitative reverse transcriptase PCR analysis (qRT-PCR), that these smaller RNA species are not derived from the primary pilE transcript following some processing events, but rather, arose through transcription of the pilS loci. Small transcriptome analysis, in conjunction with analysis of pilS recombinants, identified both sense and anti-sense RNAs originating from most, but not all, of the pilS gene copies. Focusing on the MS11 pilS6 locus, we identified by site-directed mutagenesis a sense promoter located immediately upstream of pilS6 copy 2, as well as an anti-sense promoter immediately downstream of pilS6 copy 1. Whole transcriptome analysis also revealed the presence of pil-specific sRNA in both gonococci and meningococci. Overall, this study reveals an added layer of complexity to the pilE/pilS recombination scheme by demonstrating pil-specific transcription within genes that were previously thought to be transcriptionally silent.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Neisseria gonorrhoeae/genética , Fatores de Transcrição/genética , Ativação Transcricional , Sequência de Bases , DNA Antissenso , Loci Gênicos , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas , RNA Bacteriano , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA