Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7440, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548848

RESUMO

Semiconductor wafer manufacturing relies on the precise control of various performance metrics to ensure the quality and reliability of integrated circuits. In particular, GaN has properties that are advantageous for high voltage and high frequency power devices; however, defects in the substrate growth and manufacturing are preventing vertical devices from performing optimally. This paper explores the application of machine learning techniques utilizing data obtained from optical profilometry as input variables to predict the probability of a wafer meeting performance metrics, specifically the breakdown voltage (Vbk). By incorporating machine learning techniques, it is possible to reliably predict performance metrics that cause devices to fail at low voltage. For diodes that fail at a higher (but still below theoretical) breakdown voltage, alternative inspection methods or a combination of several experimental techniques may be necessary.

2.
Sci Rep ; 13(1): 3352, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849490

RESUMO

To improve the manufacturing process of GaN wafers, inexpensive wafer screening techniques are required to both provide feedback to the manufacturing process and prevent fabrication on low quality or defective wafers, thus reducing costs resulting from wasted processing effort. Many of the wafer scale characterization techniques-including optical profilometry-produce difficult to interpret results, while models using classical programming techniques require laborious translation of the human-generated data interpretation methodology. Alternatively, machine learning techniques are effective at producing such models if sufficient data is available. For this research project, we fabricated over 6000 vertical PiN GaN diodes across 10 wafers. Using low resolution wafer scale optical profilometry data taken before fabrication, we successfully trained four different machine learning models. All models predict device pass and fail with 70-75% accuracy, and the wafer yield can be predicted within 15% error on the majority of wafers.

3.
ACS Appl Mater Interfaces ; 10(35): 29724-29729, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30092634

RESUMO

Layered materials separated from each bulk crystal can be assembled to form a strain-free heterostructure by using the van der Waals interaction. We demonstrated a heterostructure n-channel depletion-mode ß-Ga2O3 junction field-effect transistor (JFET) through van der Waals bonding with an exfoliated p-WSe2 flake. Typical diode characteristics with a high rectifying ratio of ∼105 were observed in a p-WSe2/n-Ga2O3 heterostructure diode, where WSe2 and ß-Ga2O3 were obtained by mechanically exfoliating each crystal. Layered JFETs exhibited an excellent IDS- VDS output as well as IDS- VGS transfer characteristics with a high on/off ratio (∼108) and low subthreshold swing (133 mV/dec). Saturated output currents were observed with a threshold voltage of -5.1 V and a three-terminal breakdown voltage of +144 V. Electrical performances of the fabricated heterostructure JFET were maintained at elevated temperatures with outstanding air stability. Our WSe2-Ga2O3 heterostructure JFET paves the way to the low-dimensional high-power devices, enabling miniaturization of the integrated power electronic systems.

4.
J Vis Exp ; (135)2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29889197

RESUMO

Vanadium dioxide is a material that has a reversible metal-insulator phase change near 68 °C. To grow VO2 on a wide variety of substrates, with wafer-scale uniformity and angstrom level control of thickness, the method of atomic-layer deposition was chosen. This ALD process enables high-quality, low-temperature (≤150 °C) growth of ultrathin films (100-1000 Å) of VO2. For this demonstration, the VO2 films were grown on sapphire substrates. This low temperature growth technique produces mostly amorphous VO2 films. A subsequent anneal in an ultra-high vacuum chamber with a pressure of 7x10-4 Pa of ultra-high purity (99.999%) oxygen produced oriented, polycrystalline VO2 films. The crystallinity, phase, and strain of the VO2 were determined by Raman spectroscopy and X-ray diffraction, while the stoichiometry and impurity levels were determined by X-ray photoelectron spectroscopy, and finally the morphology was determined by atomic force microscopy. These data demonstrate the high-quality of the films grown by this technique. A model was created to fit to the data for VO2 in its metallic and insulating phases in the near infrared spectral region. The permittivity and refractive index of the ALD VO2 agreed well with the other fabrication methods in its insulating phase, but showed a difference in its metallic state. Finally, the analysis of the films' optical properties enabled the creation of a wavelength- and temperature-dependent model of the complex optical refractive index for developing VO2 as a tunable refractive index material.


Assuntos
Óxidos/química , Análise Espectral Raman/métodos , Compostos de Vanádio/química , Temperatura
5.
ACS Appl Mater Interfaces ; 9(25): 21322-21327, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28560867

RESUMO

ß-gallium oxide (ß-Ga2O3) and hexagonal boron nitride (h-BN) heterostructure-based quasi-two-dimensional metal-insulator-semiconductor field-effect transistors (MISFETs) were demonstrated by integrating mechanical exfoliation of (quasi)-two-dimensional materials with a dry transfer process, wherein nanothin flakes of ß-Ga2O3 and h-BN were utilized as the channel and gate dielectric, respectively, of the MISFET. The h-BN dielectric, which has an extraordinarily flat and clean surface, provides a minimal density of charged impurities on the interface between ß-Ga2O3 and h-BN, resulting in superior device performances (maximum transconductance, on/off ratio, subthreshold swing, and threshold voltage) compared to those of the conventional back-gated configurations. Also, double-gating of the fabricated device was demonstrated by biasing both top and bottom gates, achieving the modulation of the threshold voltage. This heterostructured wide-band-gap nanodevice shows a new route toward stable and high-power nanoelectronic devices.

6.
Phys Chem Chem Phys ; 18(23): 15760-4, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27230724

RESUMO

This study demonstrated the exfoliation of a two-dimensional (2D) ß-Ga2O3 nano-belt and subsequent processing into a thin film transistor structure. This mechanical exfoliation and transfer method produces ß-Ga2O3 nano-belts with a pristine surface as well as a continuous defect-free interface with the SiO2/Si substrate. This ß-Ga2O3 nano-belt based transistor displayed an on/off ratio that increased from approximately 10(4) to 10(7) over the operating temperature range of 20 °C to 250 °C. No electrical breakdown was observed in our measurements up to VDS = +40 V and VGS = -60 V between 25 °C and 250 °C. Additionally, the electrical characteristics were not degraded after a month-long storage in ambient air. The demonstration of high-temperature/high-voltage operation of quasi-2D ß-Ga2O3 nano-belts contrasts with traditional 2D materials such as transition metal dichalcogenides that intrinsically have limited temperature and power operational envelopes owing to their narrow bandgap. This work motivates the application of 2D ß-Ga2O3 to high power nano-electronic devices for harsh environments such as high temperature chemical sensors and photodetectors as well as the miniaturization of power circuits and cooling systems in nano-electronics.

7.
Opt Express ; 23(22): 28300-5, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26561101

RESUMO

ß-Ga(2)O(3) films grown on Al(2)O(3) by a metalorganic chemical vapor deposition technique were used to fabricate a solar-blind photodetector with a planar photoconductor structure. The crystal structure and quality of the ß-Ga(2)O(3) films were analyzed using X-ray diffraction and micro-Raman spectroscopy. Si ions were introduced into the ß-Ga(2)O(3) thin films by ion implantation method and activated by an annealing process to form an Ohmic contact between the Ti/Au electrode and the ß-Ga(2)O(3) film. The electrical conductivity of the ß-Ga(2)O(3) films was greatly improved by the implantation and subsequent activation of the Si ions. The photoresponse properties of the photodetectors were investigated by analyzing the current-voltage characteristics and the time-dependent photoresponse curves. The fabricated solar-blind photodetectors exhibited photoresponse to 254 nm wavelength, and blindness to 365 nm light, with a high spectral selectivity.

8.
Phys Chem Chem Phys ; 16(30): 15780-3, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24971494

RESUMO

Wet chemical etching using hot KOH and H3PO4 solutions was performed on semipolar (11̄22) and nonpolar (11̄20) GaN films grown on sapphire substrates. An alternating KOH/H3PO4/KOH etch process was developed to control the orientation of the facets on the thin-film surface. The initial etch step in KOH produced c- and m-plane facets on the surface of both semipolar (11̄22) and nonpolar (11̄20) GaN thin-films. A second etch step in H3PO4 solution additionally exposed a (̄1̄12̄2) plane, which is chemically stable in H3PO4 solution. By repeating the chemical etch with KOH solution, the m-plane facets as seen in the original KOH etch step were recovered. The etching methods developed in our work can be used to control the surface morphologies of nonpolar and semipolar GaN-based optoelectronic devices such as light-emitting diodes and solar cells.

9.
Opt Express ; 21(23): 29025-30, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514418

RESUMO

We demonstrate AuCl3-doped graphene transparent conductive electrodes integrated in GaN-based ultraviolet (UV) light-emitting diodes (LEDs) with an emission peak of 363 nm. AuCl3 doping was accomplished by dipping the graphene electrodes in 5, 10 and 20 mM concentrations of AuCl3 solutions. The effects of AuCl3 doping on graphene electrodes were investigated by current-voltage characteristics, sheet resistance, scanning electron microscope, optical transmittance, micro-Raman scattering and electroluminescence images. The optical transmittance was decreased with increasing the AuCl3 concentrations. However, the forward currents of UV LEDs with p-doped (5, 10 and 20 mM of AuCl3 solutions) graphene transparent conductive electrodes at a forward bias of 8 V were increased by ~48, 63 and 73%, respectively, which can be attributed to the reduction of sheet resistance and the increase of work function of the graphene. The performance of UV LEDs was drastically improved by AuCl3 doping of graphene transparent conductive electrodes.

10.
Opt Express ; 19(22): 21692-7, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22109019

RESUMO

The emission and waveguiding properties of individual GaN microwires as well as devices based on an n-GaN microwire/p-Si (100) junction were studied for relevance in optoelectronics and optical circuits. Pulsed photoluminescence of the GaN microwire excited in the transverse or longitudinal direction demonstrated gain. These n-type GaN microwires were positioned mechanically or by dielectrophoretic force onto pre-patterned electrodes on a p-type Si (100) substrate. Electroluminescence from this p-n point junction was characteristic of a heterostructure light-emitting diode. Additionally, waveguiding was observed along the length of the microwire for light originating from photoluminescence as well as from electroluminescence generated at the p-n junction.


Assuntos
Gálio/química , Luz , Nanofios/química , Óptica e Fotônica , Silício/química , Microscopia , Análise Espectral
11.
Opt Express ; 19(27): 26006-10, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22274189

RESUMO

Electroluminescence (EL) was obtained from a p-Si (100) thin film/nanostructured n-ZnO heterojunction diode fabricated by a simple dielectrophoresis (DEP) method. The Si substrate was pre-patterned with electrodes and an insulating separation layer by a standard photolithographic process. ZnO nanostructures were formed by a simple solution chemistry and subsequently transferred to the pre-patterned substrate. Application of the DEP force at a frequency of 100 kHz and 6 V peak-to-peak voltage allowed precise positioning of the ZnO nanostructures at the edge of the metal electrodes. The physically formed p-Si (100) thin film/nanostructured n-ZnO heterojunction displayed multi-color emission from the ZnO near band edge as well as emission from defective states within the ZnO band gap.


Assuntos
Iluminação/instrumentação , Nanoestruturas/química , Semicondutores , Óxido de Zinco/química , Desenho de Equipamento , Análise de Falha de Equipamento , Nanoestruturas/ultraestrutura , Tamanho da Partícula
12.
Opt Express ; 18(22): 23030-4, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21164643

RESUMO

We report a graphene-based transparent conductive electrode for use in ultraviolet (UV) GaN light emitting diodes (LEDs). A few-layer graphene (FLG) layer was mechanically deposited. UV light at a peak wavelength of 368 nm was successfully emitted by the FLG layer as transparent contact to p-GaN. The emission of UV light through the thin graphene layer was brighter than through the thick graphene layer. The thickness of the graphene layer was characterized by micro-Raman spectroscopy. Our results indicate that this novel graphene-based transparent conductive electrode holds great promise for use in UV optoelectronics for which conventional ITO is less transparent than graphene.


Assuntos
Condutividade Elétrica , Gálio/química , Grafite/química , Dispositivos Ópticos , Raios Ultravioleta , Eletrodos
13.
Langmuir ; 26(13): 10725-30, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20524692

RESUMO

This paper describes the fabrication and characterization of photopolymerizable alkylphosphonate self-assembled monolayers (SAMs) on group-III nitride substrates including GaN and Al(x)Ga(1-x)N (AlGaN; x = 0.2 and 0.25). Contact angle goniometry, visible absorption spectroscopy, and atomic force microscopy were used to assess the formation, desorption, and photopolymerization of SAMs of diacetylenic alkylphosphonic acids (CH(3)(CH(2))(n)-C[triple bond]C-C[triple bond]C-(CH(2))(m)PO(OH)(2); (m, n) = (3, 11), (6, 8), and (9, 5)). As with GaN substrates (Ito, T.; Forman, S. M.; Cao, C.; Li, F.; Eddy, C. R., Jr.; Mastro, M. A.; Holm, R. T.; Henry, R. L.; Hohn, K.; Edgar, J. H. Langmuir 2008, 24, 6630-6635), alkylphosphonic acids formed SAMs on UV/O(3)-treated AlGaN substrates from their toluene solutions in contrast to other primary substituted hydrocarbons with a terminal -COOH, -NH(2), -OH, or -SH group. Diacetylenic alkylphosphonate SAMs on group-III nitrides could be polymerized by UV irradiation (254 nm), as indicated by the appearance of a visible absorption band around 640 nm and also by their significantly reduced desorption from the surface in a 0.1 M aqueous NaOH solution. A longer UV irradiation time was required to maximize the photopolymerization of a SAM having a diacetylene group close to the terminal phosphonate moiety, probably because of the hindrance of the topochemical polymerization due to the limited flexibility of the cross-linking moieties on an atomically rough substrate surface.

14.
Nanotechnology ; 21(14): 145205, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20220226

RESUMO

Control of the polarization fields is the most important parameter in designing III-nitride thin-film devices, and herein we show that the polarization fields may be equally, if not more, important in devising III-nitride nanowire devices. One common approach to produce III-nitride nanowires is via a vapor-liquid-solid approach that, in general, yields nanowires with the major (growth) axis in the <1120> direction. The cross section of this wire is an isosceles triangle with two {1101} facets and one {0001} facet. In this work, we analyze the polarization fields that arise in two distinct sets of crystal planes that can manifest in this triangular nanowire geometry: (0001), (1101), (1101) or (0001), (1101), (1101). Calculations show that the polarization field at the {0001} facet is much larger than at the two opposing {1101} facets, although the sign of the field at each facet has a complicated dependence on the orientation and structure of the nanowire. An undoped nanowire transistor was fabricated that displayed p-type operation based solely on polarization-induced hole carriers at the (0001) AlGaN/GaN interface, consistent with our field calculations.

15.
ACS Nano ; 4(2): 1108-14, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20099904

RESUMO

To make graphene technologically viable, the transfer of graphene films to substrates appropriate for specific applications is required. We demonstrate the dry transfer of epitaxial graphene (EG) from the C-face of 4H-SiC onto SiO(2), GaN and Al(2)O(3) substrates using a thermal release tape. Subsequent Hall effect measurements illustrated that minimal degradation in the carrier mobility was induced following the transfer process in lithographically patterned devices. Correspondingly, a large drop in the carrier concentration was observed following the transfer process, supporting the notion that a gradient in the carrier density is present in C-face EG, with lower values being observed in layers further removed from the SiC interface. X-ray photoemission spectra collected from EG films attached to the transfer tape revealed the presence of atomic Si within the EG layers, which may indicate the identity of the unknown intrinsic dopant in EG. Finally, this transfer process is shown to enable EG films amenable for use in device fabrication on arbitrary substrates and films that are deemed most beneficial to carrier transport, as flexible electronic devices or optically transparent contacts.

16.
Langmuir ; 24(13): 6630-5, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18522438

RESUMO

In this paper we describe the formation and characterization of self-assembled monolayers of octadecylphosphonic acid (ODPA) on epitaxial (0001) GaN films on sapphire. By immersing the substrate in its toluene solution, ODPA strongly adsorbed onto UV/O 3-treated GaN to give a hydrophobic surface. Spectroscopic ellipsometry verified the formation of a well-packed monolayer of ODPA on the GaN substrate. In contrast, adsorption of other primarily substituted hydrocarbons (C n H 2 n+1 X; n = 16-18; X = -COOH, -NH 2, -SH, and -OH) offered less hydrophobic surfaces, reflecting their weaker interaction with the GaN substrate surfaces. A UV/O 3-treated N-polar GaN had a high affinity to the -COOH group in addition to ODPA, possibly reflecting the basic properties of the surface. These observations suggested that the molecular adsorption was primarily based on hydrogen bond interactions between the surface oxide layer on the GaN substrate and the polar functional groups of the molecules. The as-prepared ODPA monolayers were desorbed from the GaN substrates by soaking in an aqueous solution, particularly in a basic solution. However, ODPA monolayers heated at 160 degrees C exhibited suppressed desorption in acidic and neutral aqueous solution maybe due to covalent bond formation between ODPA and the surface. X-ray photoelectron spectroscopy provided insight into the effect of the UV/O 3 treatment on the surface composition of the GaN substrate and also the ODPA monolayer formation. These results demonstrate that the surface of a GaN substrate can be tailored with organic molecules having an alkylphosphonic acid moiety for future sensor and device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA