Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36560369

RESUMO

Brain-Computer Interface (BCI) is a technique that allows the disabled to interact with a computer directly from their brain. P300 Event-Related Potentials (ERP) of the brain have widely been used in several applications of the BCIs such as character spelling, word typing, wheelchair control for the disabled, neurorehabilitation, and smart home control. Most of the work done for smart home control relies on an image flashing paradigm where six images are flashed randomly, and the users can select one of the images to control an object of interest. The shortcoming of such a scheme is that the users have only six commands available in a smart home to control. This article presents a symbol-based P300-BCI paradigm for controlling home appliances. The proposed paradigm comprises of a 12-symbols, from which users can choose one to represent their desired command in a smart home. The proposed paradigm allows users to control multiple home appliances from signals generated by the brain. The proposed paradigm also allows the users to make phone calls in a smart home environment. We put our smart home control system to the test with ten healthy volunteers, and the findings show that the proposed system can effectively operate home appliances through BCI. Using the random forest classifier, our participants had an average accuracy of 92.25 percent in controlling the home devices. As compared to the previous studies on the smart home control BCIs, the proposed paradigm gives the users more degree of freedom, and the users are not only able to control several home appliances but also have an option to dial a phone number and make a call inside the smart home. The proposed symbols-based smart home paradigm, along with the option of making a phone call, can effectively be used for controlling home through signals of the brain, as demonstrated by the results.


Assuntos
Interfaces Cérebro-Computador , Telecomunicações , Humanos , Potenciais Evocados P300 , Encéfalo , Redação , Eletroencefalografia
2.
Sensors (Basel) ; 22(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35591103

RESUMO

Controller design and signal processing for the control of air-vehicles have gained extreme importance while interacting with humans to form a brain-computer interface. This is because fewer commands need to be mapped into multiple controls. For our anticipated biomedical sensor for breath analysis, it is mandatory to provide medication to the patients on an urgent basis. To address this increasingly tense situation in terms of emergencies, we plan to design an unmanned vehicle that can aid spontaneously to monitor the person's health, and help the physician spontaneously during the rescue mission. Simultaneously, that must be done in such a computationally efficient algorithm that the minimum amount of energy resources are consumed. For this purpose, we resort to an unmanned logistic air-vehicle which flies from the medical centre to the affected person. After obtaining restricted permission from the regional administration, numerous challenges are identified for this design. The device is able to lift a weight of 2 kg successfully which is required for most emergency medications, while choosing the smallest distance to the destination with the GPS. By recording the movement of the vehicle in numerous directions, the results deviate to a maximum of 2% from theoretical investigations. In this way, our biomedical sensor provides critical information to the physician, who is able to provide medication to the patient urgently. On account of reasonable supply of medicines to the destination in terms of weight and time, this experimentation has been rendered satisfactory by the relevant physicians in the vicinity.


Assuntos
Algoritmos , Dispositivos Aéreos não Tripulados , Humanos , Lasers , Fenômenos Físicos
3.
Entropy (Basel) ; 23(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34828099

RESUMO

Global navigation satellite systems have been used for reliable location-based services in outdoor environments. However, satellite-based systems are not suitable for indoor positioning due to low signal power inside buildings and low accuracy of 5 m. Future smart homes demand low-cost, high-accuracy and low-power indoor positioning systems that can provide accuracy of less than 5 m and enable battery operation for mobility and long-term use. We propose and implement an intelligent, highly accurate and low-power indoor positioning system for smart homes leveraging Gaussian Process Regression (GPR) model using information-theoretic gain based on reduction in differential entropy. The system is based on Time Difference of Arrival (TDOA) and uses ultra-low-power radio transceivers working at 434 MHz. The system has been deployed and tested using indoor measurements for two-dimensional (2D) positioning. In addition, the proposed system provides dual functionality with the same wireless links used for receiving telemetry data, with configurable data rates of up to 600 Kbauds. The implemented system integrates the time difference pulses obtained from the differential circuitry to determine the radio frequency (RF) transmitter node positions. The implemented system provides a high positioning accuracy of 0.68 m and 1.08 m for outdoor and indoor localization, respectively, when using GPR machine learning models, and provides telemetry data reception of 250 Kbauds. The system enables low-power battery operation with consumption of <200 mW power with ultra-low-power CC1101 radio transceivers and additional circuits with a differential amplifier. The proposed system provides low-cost, low-power and high-accuracy indoor localization and is an essential element of public well-being in future smart homes.

4.
Lasers Med Sci ; 35(7): 1531-1542, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31912410

RESUMO

In order to design and manufacture a reliable biomedical sensor, sensitive tests have to be performed. This is of superlative importance as it has to be used for the general public. Keeping this into account, the test mechanism of such an extremely sensitive sensor is being done that involves exhaustive protocols regarding the checkup and performance of specific parameters. The control system of the setup involves optoelectronic components like fibre Bragg gratings, optical amplifiers and optical couplers that have been mechanized by implementing newly developed algorithms in software (LabView and MATLAB). Performance has been classified by hysteresis curves, scrutiny of timing analysis and investigation of error deviation. This guarantees the credibility and trustworthiness of the said sensor and aids to check out its performance from time to time. This also opens up vistas for further extensions of the project and ongoing applications which has been postulated in the conclusion.


Assuntos
Técnicas Biossensoriais , Lasers , Algoritmos , Automação , Simulação por Computador , Desenho de Equipamento , Fenômenos Ópticos , Software , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA