Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell Rep ; 42(10): 113173, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742189

RESUMO

G protein-coupled receptors (GPCRs) convert extracellular stimuli into intracellular signaling by coupling to heterotrimeric G proteins of four classes: Gi/o, Gq, Gs, and G12/13. However, our understanding of the G protein selectivity of GPCRs is incomplete. Here, we quantitatively measure the enzymatic activity of GPCRs in living cells and reveal the G protein selectivity of 124 GPCRs with the exact rank order of their G protein preference. Using this information, we establish a classification of GPCRs by functional selectivity, discover the existence of a G12/13-coupled receptor, G15-coupled receptors, and a variety of subclasses for Gi/o-, Gq-, and Gs-coupled receptors, culminating in development of the predictive algorithm of G protein selectivity. We further identify the structural determinants of G protein selectivity, allowing us to synthesize non-existent GPCRs with de novo G protein selectivity and efficiently identify putative pathogenic variants.


Assuntos
Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Transporte/metabolismo , Algoritmos
2.
Mol Pharmacol ; 102(3): 128-138, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35809897

RESUMO

Chemokines such as stromal derived factor 1 and their G protein coupled receptors are well-known regulators of the development and functions of numerous tissues. C-X-C motif chemokine ligand 12 (CXCL12) has two receptors: C-X-C chemokine motif receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3). ACKR3 has been described as an atypical "biased" receptor because it does not appear to signal through G proteins and, instead, signals solely through the ß-arrestin pathway. In support of this conclusion, we have shown that ACKR3 is unable to signal through any of the known mammalian G α isoforms and have generated a comprehensive map of the G α activation by CXCL12/CXCR4. We also synthesized a series of small molecule ligands which acted as selective agonists for ACKR3 as assessed by their ability to recruit ß-arrestin to the receptor. Using select point mutations, we studied the molecular characteristics that determine the ability of small molecules to activate ACKR3 receptors, revealing a key role for the deeper binding pocket composed of residues in the transmembrane domains of ACKR3. The development of more selective ACKR3 ligands should allow us to better appreciate the unique roles of ACKR3 in the CXCL12/CXCR4/ACKR3-signaling axis and better understand the structural determinants for ACKR3 activation. SIGNIFICANCE STATEMENT: We are interested in the signaling produced by the G protein coupled receptor atypical chemokine receptor 3 (ACKR3), which signals atypically. In this study, novel selective ligands for ACKR3 were discovered and the site of interactions between these small molecules and ACKR3 was defined. This work will help to better understand the unique signaling roles of ACKR3.


Assuntos
Quimiocina CXCL12 , Receptores CXCR4 , Animais , Quimiocina CXCL12/metabolismo , Ligantes , Mamíferos/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , beta-Arrestinas/metabolismo
3.
Cell Chem Biol ; 29(2): 226-238.e4, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34302750

RESUMO

G-protein-coupled receptors (GPCRs) represent the largest family of drug targets. Upon activation, GPCRs signal primarily via a diverse set of heterotrimeric G proteins. Most GPCRs can couple to several different G protein subtypes. However, how drugs act at GPCRs contributing to the selectivity of G protein recognition is poorly understood. Here, we examined the G protein selectivity profile of the dopamine D2 receptor (D2), a GPCR targeted by antipsychotic drugs. We show that D2 discriminates between six individual members of the Gi/o family, and its profile of functional selectivity is remarkably different across its ligands, which all engaged D2 with a distinct G protein coupling pattern. Using structural modeling, receptor mutagenesis, and pharmacological evaluation, we identified residues in the D2 binding pocket that shape these ligand-directed biases. We further provide pharmacogenomic evidence that natural variants in D2 differentially affect its G protein biases in response to different ligands.


Assuntos
Antipsicóticos/farmacologia , Haloperidol/farmacologia , Receptores de Dopamina D2/metabolismo , Antipsicóticos/química , Células HEK293 , Haloperidol/química , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos
4.
Genes (Basel) ; 12(9)2021 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-34573334

RESUMO

Identifying multiple ultra-rare genetic syndromes with overlapping phenotypes is a diagnostic conundrum in clinical genetics. This study investigated the pathogenicity of a homozygous missense variant in GNB5 (GNB5L; NM_016194.4: c.920T > G (p. Leu307Arg); GNB5S; NM_006578.4: c.794T > G (p. Leu265Arg)) identified through exome sequencing in a female child who also had 3-methylcrotonyl-CoA carboxylase (3-MCC) deficiency (newborn screening positive) and hemoglobin E trait. The proband presented with early-onset intellectual disability, the severity of which was more in keeping with GNB5-related disorder than 3-MCC deficiency. She later developed bradycardia and cardiac arrest, and upon re-phenotyping showed cone photo-transduction recovery deficit, all known only to GNB5-related disorders. Patient-derived fibroblast assays showed preserved GNB5S expression, but bioluminescence resonance energy transfer assay showed abolished function of the variant reconstituted Gß5S containing RGS complexes for deactivation of D2 dopamine receptor activity, confirming variant pathogenicity. This study highlights the need for precise phenotyping and functional assays to facilitate variant classification and clinical diagnosis in patients with complex medical conditions.


Assuntos
Carbono-Carbono Ligases/genética , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/etiologia , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Carbono-Carbono Ligases/deficiência , Criança , Oftalmopatias/etiologia , Oftalmopatias/genética , Feminino , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Doenças Genéticas Inatas/genética , Variação Genética , Células HEK293 , Humanos , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Triagem Neonatal , Fenótipo , Reprodutibilidade dos Testes , Distúrbios Congênitos do Ciclo da Ureia/etiologia , Sequenciamento do Exoma
5.
Cell Syst ; 12(4): 324-337.e5, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33667409

RESUMO

The signal transduction by G-protein-coupled receptors (GPCRs) is mediated by heterotrimeric G proteins composed from one of the 16 Gα subunits and the inseparable Gßγ complex assembled from a repertoire of 5 Gß and 12 Gγ subunits. However, the functional role of compositional diversity in Gßγ complexes has been elusive. Using optical biosensors, we examined the function of all Gßγ combinations in living cells and uncovered two major roles of Gßγ diversity. First, we demonstrate that the identity of Gßγ subunits greatly influences the kinetics and efficacy of GPCR responses at the plasma membrane. Second, we show that different Gßγ combinations are selectively dispatched from the plasma membrane to various cellular organelles on a timescale from milliseconds to minutes. We describe the mechanisms regulating these processes and document their implications for GPCR signaling via various Gα subunits, thereby illustrating a role for the compositional diversity of G protein heterotrimers.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Proteínas/genética , Humanos , Transdução de Sinais
6.
Cell Rep ; 34(5): 108718, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33535037

RESUMO

The G protein alpha subunit o (Gαo) is one of the most abundant proteins in the nervous system, and pathogenic mutations in its gene (GNAO1) cause movement disorder. However, the function of Gαo is ill defined mechanistically. Here, we show that Gαo dictates neuromodulatory responsiveness of striatal neurons and is required for movement control. Using in vivo optical sensors and enzymatic assays, we determine that Gαo provides a separate transduction channel that modulates coupling of both inhibitory and stimulatory dopamine receptors to the cyclic AMP (cAMP)-generating enzyme adenylyl cyclase. Through a combination of cell-based assays and rodent models, we demonstrate that GNAO1-associated mutations alter Gαo function in a neuron-type-specific fashion via a combination of a dominant-negative and loss-of-function mechanisms. Overall, our findings suggest that Gαo and its pathological variants function in specific circuits to regulate neuromodulatory signals essential for executing motor programs.


Assuntos
AMP Cíclico/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Transtornos dos Movimentos/genética , Animais , Humanos , Camundongos
7.
Cell ; 183(2): 503-521.e19, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007266

RESUMO

The control over the extent and timing of G protein signaling is provided by the regulator of G protein signaling (RGS) proteins that deactivate G protein α subunits (Gα). Mammalian genomes encode 20 canonical RGS and 16 Gα genes with key roles in physiology and disease. To understand the principles governing the selectivity of Gα regulation by RGS, we examine the catalytic activity of all canonical human RGS proteins and their selectivity for a complete set of Gα substrates using real-time kinetic measurements in living cells. The data reveal rules governing RGS-Gα recognition, the structural basis of its selectivity, and provide principles for engineering RGS proteins with defined selectivity. The study also explores the evolution of RGS-Gα selectivity through ancestral reconstruction and demonstrates how naturally occurring non-synonymous variants in RGS alter signaling. These results provide a blueprint for decoding signaling selectivity and advance our understanding of molecular recognition principles.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/fisiologia , Proteínas RGS/genética , Animais , Feminino , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Cultura Primária de Células , Ligação Proteica , Proteínas RGS/metabolismo , Proteínas RGS/fisiologia , Transdução de Sinais/genética
8.
Mol Genet Genomic Med ; 8(11): e1477, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32918542

RESUMO

BACKGROUND: GNB1 encodes a subunit of a heterotrimeric G-protein complex that transduces intracellular signaling cascades. Disruptions to the gene have previously been shown to be embryonic lethal in knockout mice and to cause complex neurodevelopmental disorders in humans. To date, the majority of variants associated with disease in humans have been missense variants in exons 5-7. METHODS: Genetic sequencing was performed on two patients presenting with complex neurological phenotypes including intellectual disability, hypotonia, and in one patient seizures. Reported variants were assessed using RNA sequencing and functional BRET/BiFC assays. RESULTS: A splice variant reported in patient 1 was confirmed to cause usage of a cryptic splice site leading to a truncated protein product. Patient 2 was reported to have a truncating variant. BRET and BiFC assays of both patient variants confirmed both were deficient in inducing GPCR-induced G protein activation due to lack of dimer formation with the Gγ subunit. CONCLUSION: Here, we report two patients with functionally confirmed loss of function variants in GNB1 and neurodevelopmental phenotypes including intellectual disability, hypotonia, and seizures in one patient. These results suggest haploinsufficiency of GNB1 is a mechanism for neurodevelopmental disorders in humans.


Assuntos
Deficiências do Desenvolvimento/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Haploinsuficiência , Deficiência Intelectual/genética , Mutação com Perda de Função , Convulsões/genética , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Feminino , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Deficiência Intelectual/patologia , Masculino , Mutação de Sentido Incorreto , Splicing de RNA , Convulsões/patologia , Transdução de Sinais
9.
Proc Natl Acad Sci U S A ; 117(25): 14522-14531, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513692

RESUMO

How G protein-coupled receptors (GPCRs) evoke specific biological outcomes while utilizing a limited array of G proteins and effectors is poorly understood, particularly in native cell systems. Here, we examined signaling evoked by muscarinic (M2R) and adenosine (A1R) receptor activation in the mouse sinoatrial node (SAN), the cardiac pacemaker. M2R and A1R activate a shared pool of cardiac G protein-gated inwardly rectifying K+ (GIRK) channels in SAN cells from adult mice, but A1R-GIRK responses are smaller and slower than M2R-GIRK responses. Recordings from mice lacking Regulator of G protein Signaling 6 (RGS6) revealed that RGS6 exerts a GPCR-dependent influence on GIRK-dependent signaling in SAN cells, suppressing M2R-GIRK coupling efficiency and kinetics and A1R-GIRK signaling amplitude. Fast kinetic bioluminescence resonance energy transfer assays in transfected HEK cells showed that RGS6 prefers Gαo over Gαi as a substrate for its catalytic activity and that M2R signals preferentially via Gαo, while A1R does not discriminate between inhibitory G protein isoforms. The impact of atrial/SAN-selective ablation of Gαo or Gαi2 was consistent with these findings. Gαi2 ablation had minimal impact on M2R-GIRK and A1R-GIRK signaling in SAN cells. In contrast, Gαo ablation decreased the amplitude and slowed the kinetics of M2R-GIRK responses, while enhancing the sensitivity and prolonging the deactivation rate of A1R-GIRK signaling. Collectively, our data show that differences in GPCR-G protein coupling preferences, and the Gαo substrate preference of RGS6, shape A1R- and M2R-GIRK signaling dynamics in mouse SAN cells.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Nó Sinoatrial/metabolismo , Potenciais de Ação/fisiologia , Animais , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Células HEK293 , Frequência Cardíaca/fisiologia , Humanos , Preparação de Coração Isolado , Camundongos , Camundongos Knockout , Cultura Primária de Células , Proteínas RGS/genética , Receptor A1 de Adenosina/metabolismo , Receptor Muscarínico M2/metabolismo , Transdução de Sinais/fisiologia , Nó Sinoatrial/citologia
10.
J Biol Chem ; 295(31): 10822-10830, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32576659

RESUMO

The interplay between G protein-coupled receptors (GPCRs) is critical for controlling neuronal activity that shapes neuromodulatory outcomes. Recent evidence indicates that the orphan receptor GPR139 influences opioid modulation of key brain circuits by opposing the actions of the µ-opioid receptor (MOR). However, the function of GPR139 and its signaling mechanisms are poorly understood. In this study, we report that GPR139 activates multiple heterotrimeric G proteins, including members of the Gq/11 and Gi/o families. Using a panel of reporter assays in reconstituted HEK293T/17 cells, we found that GPR139 functions via the Gq/11 pathway and thereby distinctly regulates cellular effector systems, including stimulation of cAMP production and inhibition of G protein inward rectifying potassium (GIRK) channels. Electrophysiological recordings from medial habenular neurons revealed that GPR139 signaling via Gq/11 is necessary and sufficient for counteracting MOR-mediated inhibition of neuronal firing. These results uncover a mechanistic interplay between GPCRs involved in controlling opioidergic neuromodulation in the brain.


Assuntos
Encéfalo/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides mu/metabolismo , Sistemas do Segundo Mensageiro , Animais , Encéfalo/citologia , AMP Cíclico/genética , AMP Cíclico/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Receptores Acoplados a Proteínas G/genética , Receptores Opioides mu/genética
11.
Basic Clin Pharmacol Toxicol ; 126 Suppl 6: 88-95, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30916867

RESUMO

Heterotrimeric G proteins are essential mediators of G protein-coupled receptors (GPCRs) signalling to intracellular effectors. There is a considerable diversity of G protein subunits that channel signals initiated by GPCRs into specific outcome. In particular, mammalian genomes contain 16 conserved genes encoding G protein α subunits with unique properties. Of four Gα subfamilies (Gi/o, Gq, Gs and G12/13), members of the G12/13 group have received considerable attention for their roles in carcinogenesis. However, our ability to study activation of G12/13 by GPCRs with the power to distinguish between the two subunits is limited. Here, we present an adaptation of the bioluminescence resonance energy transfer (BRET)-based assay to specifically monitor activity of Gα12 in living cells. In this kinetic assay, agonist-induced release of Venus-tagged Gßγ subunits from Gα12 is followed in real time using nano-luciferase (Nluc)-tagged BRET donor. Using this assay, we characterized bradykinin B2 receptor (BDKRB2) and found that the receptor couples to Gα12 in addition to Gαo, and Gαq, but not to Gαs. We demonstrated the utility of this assay to quantify rates of G protein activation and inactivation as well as performing dose-response studies while rank ordering signalling via individual Gα subunits. We further showed the utility of this assay to other GPCRs by demonstrating Gα12 coupling of cholecystokinin A receptor (CCKAR). Introduction of the Gα12-coupling BRET assay is expected to accelerate characterization of GPCR actions on this understudied G protein.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Medições Luminescentes/métodos , Receptor B2 da Bradicinina/química , Receptor B2 da Bradicinina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Bradicinina/farmacologia , Células HEK293 , Humanos , Cinética , Proteínas Luminescentes/metabolismo , Transdução de Sinais/fisiologia
12.
Science ; 365(6459): 1267-1273, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31416932

RESUMO

Opioids target the µ-opioid receptor (MOR) to produce unrivaled pain management, but their addictive properties can lead to severe abuse. We developed a whole-animal behavioral platform for unbiased discovery of genes influencing opioid responsiveness. Using forward genetics in Caenorhabditis elegans, we identified a conserved orphan receptor, GPR139, with anti-opioid activity. GPR139 is coexpressed with MOR in opioid-sensitive brain circuits, binds to MOR, and inhibits signaling to heterotrimeric guanine nucleotide-binding proteins (G proteins). Deletion of GPR139 in mice enhanced opioid-induced inhibition of neuronal firing to modulate morphine-induced analgesia, reward, and withdrawal. Thus, GPR139 could be a useful target for increasing opioid safety. These results also demonstrate the potential of C. elegans as a scalable platform for genetic discovery of G protein-coupled receptor signaling principles.


Assuntos
Comportamento Animal , Caenorhabditis elegans/genética , Proteínas do Tecido Nervoso/genética , Receptores Nucleares Órfãos/genética , Receptores Acoplados a Proteínas G/genética , Receptores Opioides mu/genética , Analgesia , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Mapeamento Cromossômico , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Morfina/farmacologia , Neurônios/efeitos dos fármacos , Transdução de Sinais
14.
Cell Rep ; 24(3): 557-568.e5, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021154

RESUMO

Despite the wealth of genetic information available, mechanisms underlying pathological effects of disease-associated mutations in components of G protein-coupled receptor (GPCR) signaling cascades remain elusive. In this study, we developed a scalable approach for the functional analysis of clinical variants in GPCR pathways along with a complete analytical framework. We applied the strategy to evaluate an extensive set of dystonia-causing mutations in G protein Gαolf. Our quantitative analysis revealed diverse mechanisms by which pathogenic variants disrupt GPCR signaling, leading to a mechanism-based classification of dystonia. In light of significant clinical heterogeneity, the mechanistic analysis of individual disease-associated variants permits tailoring personalized intervention strategies, which makes it superior to the current phenotype-based approach. We propose that the platform developed in this study can be universally applied to evaluate disease mechanisms for conditions associated with genetic variation in all components of GPCR signaling.


Assuntos
Doença/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Adenilil Ciclases/metabolismo , Animais , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutação/genética , Nucleotídeos/metabolismo , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica
15.
J Biol Chem ; 293(36): 13897-13909, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-29997255

RESUMO

PHR (PAM/Highwire/RPM-1) proteins are conserved RING E3 ubiquitin ligases that function in developmental processes, such as axon termination and synapse formation, as well as axon degeneration. At present, our understanding of how PHR proteins form ubiquitin ligase complexes remains incomplete. Although genetic studies indicate NMNAT2 is an important mediator of PHR protein function in axon degeneration, it remains unknown how PHR proteins inhibit NMNAT2. Here, we decipher the biochemical basis for how the human PHR protein PAM, also called MYCBP2, forms a noncanonical Skp/Cullin/F-box (SCF) complex that contains the F-box protein FBXO45 and SKP1 but lacks CUL1. We show FBXO45 does not simply function in substrate recognition but is important for assembly of the PAM/FBXO45/SKP1 complex. Interestingly, we demonstrate a novel role for SKP1 as an auxiliary component of the target recognition module that enhances binding of FBXO45 to NMNAT2. Finally, we provide biochemical evidence that PAM polyubiquitinates NMNAT2 and regulates NMNAT2 protein stability and degradation by the proteasome.


Assuntos
Amidina-Liases/química , Oxigenases de Função Mista/química , Nicotinamida-Nucleotídeo Adenililtransferase/química , Proteínas Ligases SKP Culina F-Box/química , Ubiquitinação , Proteínas Adaptadoras de Transdução de Sinal , Animais , Caenorhabditis elegans , Proteínas F-Box/metabolismo , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/fisiologia , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Ligação Proteica , Proteínas Quinases Associadas a Fase S , Proteínas Ligases SKP Culina F-Box/fisiologia , Ubiquitina-Proteína Ligases
16.
Nat Commun ; 9(1): 1996, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29777099

RESUMO

G protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by mediating a GDP to GTP exchange in the Gα subunit. This leads to dissociation of the heterotrimer into Gα-GTP and Gßγ dimer. The Gα-GTP and Gßγ dimer each regulate a variety of downstream pathways to control various aspects of human physiology. Dysregulated Gßγ-signaling is a central element of various neurological and cancer-related anomalies. However, Gßγ also serves as a negative regulator of Gα that is essential for G protein inactivation, and thus has the potential for numerous side effects when targeted therapeutically. Here we report a llama-derived nanobody (Nb5) that binds tightly to the Gßγ dimer. Nb5 responds to all combinations of ß-subtypes and γ-subtypes and competes with other Gßγ-regulatory proteins for a common binding site on the Gßγ dimer. Despite its inhibitory effect on Gßγ-mediated signaling, Nb5 has no effect on Gαq-mediated and Gαs-mediated signaling events in living cells.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Anticorpos de Domínio Único/metabolismo , Sítios de Ligação , Dimerização , Subunidades alfa de Proteínas de Ligação ao GTP/química , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/genética , Guanosina Trifosfato/metabolismo , Humanos , Ligação Proteica , Transdução de Sinais , Anticorpos de Domínio Único/química
17.
Sci Rep ; 8(1): 653, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330521

RESUMO

Analysis of 501 melanoma exomes revealed RGS7, which encodes a GTPase-accelerating protein (GAP), to be a tumor-suppressor gene. RGS7 was mutated in 11% of melanomas and was found to harbor three recurrent mutations (p.R44C, p.E383K and p.R416Q). Structural modeling of the most common recurrent mutation of the three (p.R44C) predicted that it destabilizes the protein due to the loss of an H-bond and salt bridge network between the mutated position and the serine and aspartic acid residues at positions 58 as 61, respectively. We experimentally confirmed this prediction showing that the p.R44C mutant protein is indeed destabilized. We further show RGS7 p.R44C has weaker catalytic activity for its substrate Gαo, thus providing a dual mechanism for its loss of function. Both of these effects are expected to contribute to loss of function of RGS7 resulting in increased anchorage-independent growth, migration and invasion of melanoma cells. By mutating position 56 in the R44C mutant from valine to cysteine, thereby enabling the formation of a disulfide bridge between the two mutated positions, we slightly increased the catalytic activity and reinstated protein stability, leading to the rescue of RGS7's function as a tumor suppressor. Our findings identify RGS7 as a novel melanoma driver and point to the clinical relevance of using strategies to stabilize the protein and, thereby, restore its function.


Assuntos
Melanoma/genética , Mutação , Proteínas RGS/química , Proteínas RGS/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Dissulfetos/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Ligação de Hidrogênio , Melanoma/metabolismo , Modelos Moleculares , Invasividade Neoplásica , Conformação Proteica , Estabilidade Proteica , Proteínas RGS/genética
18.
Cell ; 172(1-2): 41-54.e19, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29249361

RESUMO

Natural genetic variation in the human genome is a cause of individual differences in responses to medications and is an underappreciated burden on public health. Although 108 G-protein-coupled receptors (GPCRs) are the targets of 475 (∼34%) Food and Drug Administration (FDA)-approved drugs and account for a global sales volume of over 180 billion US dollars annually, the prevalence of genetic variation among GPCRs targeted by drugs is unknown. By analyzing data from 68,496 individuals, we find that GPCRs targeted by drugs show genetic variation within functional regions such as drug- and effector-binding sites in the human population. We experimentally show that certain variants of µ-opioid and Cholecystokinin-A receptors could lead to altered or adverse drug response. By analyzing UK National Health Service drug prescription and sales data, we suggest that characterizing GPCR variants could increase prescription precision, improving patients' quality of life, and relieve the economic and societal burden due to variable drug responsiveness. VIDEO ABSTRACT.


Assuntos
Farmacogenética/métodos , Variantes Farmacogenômicos , Receptores Acoplados a Proteínas G/genética , Software , Sítios de Ligação , Prescrições de Medicamentos/normas , Células HEK293 , Humanos , Ligação Proteica , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
19.
Cell Rep ; 21(8): 2074-2081, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166600

RESUMO

Prior studies have shown that aversive olfactory memory is acquired by dopamine acting on a specific receptor, dDA1, expressed by mushroom body neurons. Active forgetting is mediated by dopamine acting on another receptor, Damb, expressed by the same neurons. Surprisingly, prior studies have shown that both receptors stimulate cyclic AMP (cAMP) accumulation, presenting an enigma of how mushroom body neurons distinguish between acquisition and forgetting signals. Here, we surveyed the spectrum of G protein coupling of dDA1 and Damb, and we confirmed that both receptors can couple to Gs to stimulate cAMP synthesis. However, the Damb receptor uniquely activates Gq to mobilize Ca2+ signaling with greater efficiency and dopamine sensitivity. The knockdown of Gαq with RNAi in the mushroom bodies inhibits forgetting but has no effect on acquisition. Our findings identify a Damb/Gq-signaling pathway that stimulates forgetting and resolves the opposing effects of dopamine on acquisition and forgetting.


Assuntos
Proteínas de Drosophila/metabolismo , Memória/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores Dopaminérgicos/metabolismo , Animais , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , AMP Cíclico/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Corpos Pedunculados/metabolismo , Receptores Dopaminérgicos/genética , Receptores de Dopamina D1/genética , Olfato/fisiologia
20.
J Biol Chem ; 292(36): 14989-15001, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739799

RESUMO

Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) is a bona fide marker of adult stem cells in several epithelial tissues, most notably in the intestinal crypts, and is highly up-regulated in many colorectal, hepatocellular, and ovarian cancers. LGR5 activation by R-spondin (RSPO) ligands potentiates Wnt/ß-catenin signaling in vitro; however, deletion of LGR5 in stem cells has little or no effect on Wnt/ß-catenin signaling or cell proliferation in vivo Remarkably, modulation of LGR5 expression has a major impact on the actin cytoskeletal structure and cell adhesion in the absence of RSPO stimulation, but the molecular mechanism is unclear. Here, we show that LGR5 interacts with IQ motif-containing GTPase-activating protein 1 (IQGAP1), an effector of Rac1/CDC42 GTPases, in the regulation of actin cytoskeleton dynamics and cell-cell adhesion. Specifically, LGR5 decreased levels of IQGAP1 phosphorylation at Ser-1441/1443, leading to increased binding of Rac1 to IQGAP1 and thus higher levels of cortical F-actin and enhanced cell-cell adhesion. LGR5 ablation in colon cancer cells and crypt stem cells resulted in loss of cortical F-actin, reduced cell-cell adhesion, and disrupted localization of adhesion-associated proteins. No evidence of LGR5 coupling to any of the four major subtypes of heterotrimeric G proteins was found. These findings suggest that LGR5 primarily functions via the IQGAP1-Rac1 pathway to strengthen cell-cell adhesion in normal adult crypt stem cells and colon cancer cells.


Assuntos
Adesão Celular , Neoplasias do Colo/patologia , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/citologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Células CHO , Células Cultivadas , Neoplasias do Colo/metabolismo , Cricetulus , Células HEK293 , Humanos , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA