Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 33(36): 8883-8890, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28799335

RESUMO

The structure and mechanical properties of polybutadiene (PB) films on bare and surface-modified carbon films were examined. There was an interfacial layer of PB near the carbon layer whose density was higher (lower) than that of the bulk material on the hydrophobic (hydrophilic) carbon surface. To glean information about the structure and mechanical properties of PB at the carbon interface, a residual layer (RL) adhering to the carbon surface, which was considered to be a model of "bound rubber layer", was obtained by rinsing the PB film with toluene. The density and thickness of the RLs were identical to those of the interfacial layer of the PB film. In accordance with the change in the density, normal stress of the RLs evaluated by atomic force microscopy was also dependent on the surface free energy: the RLs on the hydrophobic carbon were hard like glass, whereas those on the hydrophilic carbon were soft like rubber. Similarly, the wear test revealed that the RLs on the hydrophilic carbon could be peeled off by scratching under a certain stress, whereas the RLs on the hydrophobic carbons were resistant to scratching.

2.
J Appl Crystallogr ; 49(Pt 6): 2036-2045, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27980510

RESUMO

Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization (PH). The following samples were prepared: (i) a binary mixture of styrene-butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for PH = -35% or PH = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å-1) varied as a quadratic function of PH and indicated a minimum value at PH = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å-1) decreased with increasing PH, which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing PH. At PH = -35%, the scattering maxima originating from the form factor of SP prevailed, whereas at PH = 29% and PH = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix calculations, the partial scattering functions were obtained. The partial scattering function obtained for SP was well reproduced by a spherical form factor and matched the SANS profile for the SBR/SP mixture. The partial scattering function for CP exhibited surface fractal behaviour according to q-3.6, which is consistent with the results for the SBR/CP mixture.

3.
ACS Macro Lett ; 4(8): 838-842, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35596506

RESUMO

We report in situ nanostructures and dynamics of polybutadiene (PB) chains bound to carbon black (CB) fillers (the so-called "bound polymer layer (BPL)") in a good solvent. The BPL on the CB fillers was extracted by solvent leaching of a CB-filled PB compound and subsequently dispersed in deuterated toluene to label the BPL for small-angle neutron scattering and neutron spin echo techniques. The results demonstrate that the BPL is composed of two regions regardless of molecular weights of PB: the inner unswollen region of ≈ 0.5 nm thick and outer swollen region where the polymer chains display a parabolic profile with a diffuse tail. In addition, the results show that the dynamics of the swollen bound chains can be explained by the so-called "breathing mode" and is generalized with the thickness of the swollen BPL.

4.
Biophys J ; 92(1): 115-25, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17028133

RESUMO

We have studied the growth dynamics of domains on ternary fluid vesicles composed of saturated (dipalmitoylphosphatidylcholine), unsaturated (dioleoylphosphatidylcholine) phosphatidylcholine lipids, and cholesterol using a fluorescence microscopy. The domain coarsening processes are classified into two types: normal coarsening and trapped coarsening. For the normal coarsening, the domains having flat circular shape grow in a diffusion-and-coalescence manner and phenomenologically the mean size grows as a power law of approximately t(2/3). The observed growth law is not described by a two-dimensional diffusion-and-coalescence growth mechanism following the Saffman and Delbrück theory, which may originate from the two-body hydrodynamic interactions between domains. For trapped coarsening, on the other hand, the domain coarsening is suppressed at a certain domain size because the repulsive interdomain interactions obstruct the coalescence of domains. The two-color imaging of the trapped domains reveals that the repulsive interactions are induced by the budding of domains. The model free energy consisting of the bending energy of domains, the bending energy of matrix, the line energy of domain boundary, and the translation energy of domains can describe the observed trapped coarsening. The trapping of domains is caused by the coupling between the phase separation and the membrane elasticity under the incompressibility constraint.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Biofísica/métodos , Colesterol/química , Fosfatidilcolinas/química , Difusão , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Conformação Molecular , Temperatura , Termodinâmica , Fatores de Tempo
5.
J Chem Phys ; 124(7): 74904, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16497079

RESUMO

We have investigated the effects of grafted polymer chains [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] on the bending modulus and the intermembrane interactions of lamellar membranes (C(12)E(5) water) by means of a neutron spin-echo and a small-angle x-ray scattering technique. In this study the hydrophilic chain takes the mushroom configuration on the membrane. The bending modulus of the polymer-grafted membranes increases in proportion to the square of the end to end distance of the polymer chain, which agrees well with the theoretical prediction of Hiergeist and Lipowsky [J. Phys. II 6, 1465 (1996)]. From the interlamellar interaction point of view, the mushroom layer is renormalized to the membrane thickness, which enhances the repulsive Helfrich interaction. When the size of the decorated polymer chain increases to the interlamellar distance, however, the mushroom is squeezed so as to optimize the interlamellar potential. Further increase of the grafted polymer size brings a lamellar-lamellar phase separation, where the grafted polymer chains are localized in the dilute lamellar phase and the concentrated lamellar phase forms the onionlike texture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA