Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(6): 4065-4076, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36756583

RESUMO

The isotropic electrostatic polarizability (IEP) of sub-nanosized magnesium clusters Mg2-Mg32 was studied in an extensive set comprising 1237 structurally unique isomers. These isomers were found in the course of the global search for the potential energy surface minima of the magnesium clusters at the BP86/6-31G(d) level. The calculation of the polarizability at the same DFT level reveals an unexpected property of the IEP: the linear correlation between the polarizability of the most favorable isomers (and only them) and the cluster nuclearity n. Moreover, for each n, the most stable cluster isomer demonstrates nearly minimal IEP value among all found isomers of a given nuclearity. Surprisingly, these observed features are independent of the cluster structures which are quite different. We hypothesize that the energetic favorability of a cluster structure is related to their low polarizability. Apparently, the atoms forming the cluster tend to arrange themselves in such a way as to provide the most compact distribution of the cluster electron density. A possible explanation of the observed trends, their significance for cluster structure prediction, and the practical applications are discussed.

2.
J Phys Chem A ; 125(30): 6543-6555, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34297565

RESUMO

About 9000 structures of magnesium clusters Mgn (n = 2-13) generated via different methods were optimized at the DFT levels in order to estimate the number of all possible stable structures that can exist for the given cluster size (∼820,000 PES points were explored in total). It was found that the number of possible cluster isomers N quickly grows with a number of atoms n; however, it is significantly lower than the number of possible nonisomorphic graph structures, which can be drawn for the given n. At the DFT potential energy surface, we found only 543 local minima corresponding to the isomers of Mg2-Mg13. The number of isomers obtained in the DFT optimizations grows with n approximately as n4, whereas the N values extrapolated to the infinite generation process grow as n8. The cluster geometries obtained from the global DFT optimization were then used to adjust two empirical potentials of Gupta type (GP) and modified Sutton-Chen type (SCG3) describing the interactions between the magnesium atoms. Using these potentials, the extensive sets of structures Mg2-Mg55 (up to 30,000 clusters for each n) were optimized to obtain the dependence of the cluster isomer count on n in the continuous range of n = 2-30 and for selected n up to n = 55. It was found that the SCG3 potential, which is closer to the DFT results, gives a number of possible isomers growing as approximately n8.9, whereas GP potential results in the n4.3 dependence.

3.
J Phys Chem A ; 125(28): 6029-6041, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34232648

RESUMO

The 4-hydroxypyrrolidine-2-carboxanilide podand salt demonstrates catalytic activity in asymmetric Biginelli reaction. The systematic search for prevalent conformational state of the cation was carried out by computer simulations in combination with one- and two-dimensional NMR experiments. For that purpose, we proposed a novel algorithm for the generation and selection of conformers based on molecular dynamics and clustering in the space of principal components. The search had found an important trend of the podand to form a pseudocyclic structure with a horseshoe-shaped conformation of the oligooxyethylene fragment. This conformation is stabilized by different types of intramolecular hydrogen bonds between the acidic and basic centers of the two 4-hydroxypyrrolidine-2-carboxanilide residuals (branches). The proposed approach had made it possible to identify the major structural factors, providing a correlation between the calculated and experimental chemical shifts of hydrogen atoms in the 1H NMR spectra of the protonated podand.

4.
J Phys Chem A ; 124(52): 11038-11050, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33337890

RESUMO

Recent advances in laser technology have made three-photon (3P) microscopy a real possibility, raising interest in the phenomenon of 3P absorption (3PA). Understanding 3PA of organic chromophores is especially important in view of those imaging applications that rely on exogenous probes, whose optical properties can be manipulated and optimized. Here, we present measurements and theoretical analysis of the degenerate 3PA spectra of several phosphorescent metalloporphyrins, which are used in the construction of biological oxygen probes. The effective 3PA cross sections (σ(3)) of these porphyrins near 1700 nm, a new promising biological optical window, were found to be on the order of 1000 GM3 (1 GM3 = 10-83 cm6 s2), therefore being among the highest values reported to date for organic chromophores. To interpret our data, we developed a qualitative four-state model specific for porphyrins and used it in conjunction with quantitative analysis based on the time-dependent density functional theory (TDDFT)/a posteriori Tamm-Dancoff approximation (ATDA)/sum-over-states (SOS) formalism. The analysis revealed that B (Soret) state plays a key role in the enhancement of 3PA of porphyrins in the Q band region, while the low-lying two-photon (2P)-allowed gerade states interfere negatively and diminish the 3PA strength. This study features the first systematic examination of 3PA properties of porphyrins, suggesting ways to improve their performance and optimize them for imaging and other biomedical applications.


Assuntos
Espectroscopia Fotoeletrônica/métodos , Porfirinas/química , Lasers , Modelos Moleculares , Estrutura Molecular
5.
Sci Rep ; 10(1): 13569, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782338

RESUMO

Fentanyl is an anesthetic with a high bioavailability and is the leading cause of drug overdose death in the U.S. Fentanyl and its derivatives have a low lethal dose and street drugs which contain such compounds may lead to death of the user and simultaneously pose hazards for first responders. Rapid identification methods of both known and emerging opioid fentanyl substances is crucial. In this effort, machine learning (ML) is applied in a systematic manner to identify fentanyl-related functional groups in such compounds based on their observed spectral properties. In our study, accurate infrared (IR) spectra of common organic molecules which contain functional groups that are constituents of fentanyl is determined by investigating the structure-property relationship. The average accuracy rate of correctly identifying the functional groups of interest is 92.5% on our testing data. All the IR spectra of 632 organic molecules are from National Institute of Standards and Technology (NIST) database as the training set and are assessed. Results from this work will provide Artificial Intelligence (AI) based tools and algorithms increased confidence, which serves as a basis to detect fentanyl and its derivatives.

6.
J Phys Chem A ; 123(50): 10772-10781, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31820644

RESUMO

Reactions of the hydrogen atom and the oxygen molecule are among the most important ones in the hydrogen and hydrocarbon oxidation mechanisms, including combustion in a supercritical CO2 (sCO2) environment, known as oxy-combustion or the Allam cycle. Development of these energy technologies requires understanding of chemical kinetics of H + O2 ⇌ HO + O and H + O2 ⇌ HO2 in high pressures and concentrations of CO2. Here, we combine quantum treatment of the reaction system by the transition state theory with classical molecular dynamics simulation and the multistate empirical valence bonding method to treat environmental effects. Potential of mean force in the sCO2 solvent at various temperatures 1000-2000 K and pressures 100-400 atm was obtained. The reaction rate for H + O2 ⇌ HO + O was found to be pressure-independent and described by the extended Arrhenius equation 4.23 × 10-7 T-0.73 exp(-21 855.2 cal/mol/RT) cm3/molecule/s, while the reaction rate H + O2 ⇌ HO2 is pressure-dependent and can be expressed as 5.22 × 10-2 T-2.86 exp(-7247.4 cal/mol/RT) cm3/molecule/s at 300 atm.

7.
ACS Omega ; 4(12): 14669-14679, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31552306

RESUMO

The electronic properties of neutral 2,4-bis(4-bis(2-hydroxyethyl) amino-2-hydroxy-6-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl)squaraine (1) and charged 2-((3-octadecylbenzothiazol-2(3H)-ylidene)methyl)-3-oxo-4-((3-(4-(pyridinium-1-yl)butyl)benzo-thiazol-3-ium-2-yl)methylene)cyclobut-1-enolate iodide (2) squaraine derivatives were analyzed based on comprehensive linear photophysical, photochemical, nonlinear optical studies (including two-photon absorption (2PA) and femtosecond transient absorption spectroscopy measurements), and quantum chemical calculations. The steady-state absorption, fluorescence, and excitation anisotropy spectra of these new squaraines revealed the values and mutual orientations of the main transition dipoles of 1 and 2 in solvents of different polarity, while their role in specific nonlinear optical properties was shown. The degenerate 2PA spectra of 1 and 2 exhibited similar shapes, with maximum cross sections of ∼300-400 GM, which were determined by the open aperture Z-scan method over a broad spectral range. The nature of the time-resolved excited-state absorption spectra of 1 and 2 was analyzed using a femtosecond transient absorption pump-probe technique and the characteristic relaxation times of 4-5 ps were revealed. Quantum chemical analyses of the electronic properties of 1 and 2 were performed using the ZINDO/S//DFT theory level, affording good agreement with experimental data. To demonstrate the potential of squaraines 1 and 2 as fluorescent probes for bioimaging, laser scanning fluorescence microscopy images of HeLa cells incubated with new squaraines were obtained.

8.
J Phys Chem A ; 123(22): 4776-4784, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31034229

RESUMO

Fossil fuel oxy-combustion is an emerging technology where the habitual nitrogen diluent is replaced by high-pressure supercritical CO2 (sCO2), which increases the efficiency of energy conversion. In this study, the chemical kinetics of the combustion reaction C2H6 ⇌ CH3 + CH3 in the sCO2 environment is predicted at 30-1000 atm and 1000-2000 K. We adopt a multiscale approach, where the reactive complex is treated quantum mechanically in rigid rotor/harmonic oscillator approximation, while environment effects at different densities are taken into account by the potential of mean force, produced with classical molecular dynamics (MD). Here, we used boxed MD, where enhanced sampling of infrequent events of barrier crossing is accomplished without application of the bias potential. The multistate empirical valence bond model is applied to describe free radical formation accurately at the cost of the classical force field. Predicted rates at low densities agree well with the literature data. Rate constants at 300 atm are 2.41 × 1014 T-0.20 exp(-77.03 kcal/mol/ RT) 1/s for ethane dissociation and 8.44 × 10-19 T1.42 exp(19.89 kcal/mol/ RT) cm3/molecule/s for methyl-methyl recombination.

9.
J Phys Chem A ; 123(22): 4764-4775, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-30924652

RESUMO

Triethyl phosphate (TEP) is an organophosphorus compound used as a simulant for highly toxic nerve agents such as sarin GB. A high temperature decomposition pathway during TEP pyrolysis has been proposed previously and takes place via seven concerted elimination reactions. A computational study to investigate the kinetics of these seven reactions was carried out at the CBS-QB3 level of theory. The transition state optimization was done at the B3LYP/6-311G(2d,d,p) theory level, and CanTherm was used to derive the Arrhenius coefficients. The pre-exponential factors of the rate constant of these reactions were found to be up to 50 times lower than the estimated values from the literature. In addition, kinetics of reaction of the trioxidophosphorus radical (PO3) with H2 (H2 + PO3 → HOPO2 + H), which is one of the important reactions in predicting CO formation during TEP decomposition, was also investigated computationally at the same theory level. The new kinetic parameters derived from the computational study were used with the TEP kinetic model proposed recently by our group. In addition, an alternative decomposition pathway for TEP decomposition via H-abstraction, radical decomposition, and recombination reactions was added. The proposed mechanism was validated with the literature's experimental data, that is, intermediate CO time-history data from pyrolysis and oxidation experiments and ignition delay times. Fairly good agreement with experiments was obtained for pyrolysis and oxidation CO yield within 1200-1700 K. The model was able to predict the ignition times of the rich TEP mixture (φ = 2) within 25% of the experimental results, while the discrepancies for stoichiometric and rich mixtures were larger. Discussions on results of sensitivity and reaction pathway analysis are presented to identify the important phosphorus reactions and to understand the effect of addition of the alternative TEP decomposition pathway.

10.
Cell Metab ; 29(3): 736-744.e7, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30686745

RESUMO

Quantitative imaging of oxygen distributions in tissue can provide invaluable information about metabolism in normal and diseased states. Two-photon phosphorescence lifetime microscopy (2PLM) has been developed to perform measurements of oxygen in vivo with micron-scale resolution in 3D; however, the method's potential has not yet been fully realized due to the limitations of current phosphorescent probe technology. Here, we report a new sensor, Oxyphor 2P, that enables oxygen microscopy twice as deep (up to 600 µm below the tissue surface) and with ∼60 times higher speed than previously possible. Oxyphor 2P allows longitudinal oxygen measurements without having to inject the probe directly into the imaged region. As proof of principle, we monitored oxygen dynamics for days following micro-stroke induced by occlusion of a single capillary in the mouse brain. Oxyphor 2P opens up new possibilities for studies of tissue metabolic states using 2PLM in a wide range of biomedical research areas.


Assuntos
Encéfalo/diagnóstico por imagem , Capilares/diagnóstico por imagem , Medições Luminescentes/métodos , Microscopia Confocal/métodos , Oxigênio/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fótons
11.
J Mol Model ; 25(2): 35, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631947

RESUMO

Fossil fuel oxy-combustion is an emergent technology where habitual nitrogen diluent is replaced by high pressure (supercritical) carbon dioxide. The supercritical state of CO2 increases the efficiency of the energy conversion and the absence of nitrogen from the reaction mixture reduces pollution by NOx. However, the effects of a supercritical environment on elementary reactions kinetics are not well understood at present. We used boxed molecular dynamics simulations at the QM/MM theory level to predict the kinetics of dissociation/recombination reaction HCO• + [M] ↔ H• + CO + [M], an important elementary step in many combustion processes. A wide range of temperatures (400-1600 K) and pressures (0.3-1000 atm) were studied. Potentials of mean force were plotted and used to predict activation free energies and rate constants. Based on the data obtained, extended Arrhenius equation parameters were fitted and tabulated. The apparent activation energy for the recombination reaction becomes negative above 30 atm. As the temperature increased, the pressure effect on the rate constant decreased. While at 400 K the pressure increase from 0.3 atm to 300 atm accelerated the dissociation reaction by a factor of 250, at 1600 K the same pressure increase accelerated this reaction by a factor of 100. Graphical abstract Formyl radical surrounded by carbon dioxide molecules.

12.
J Phys Chem A ; 122(31): 6355-6359, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30062895

RESUMO

We investigated the reaction rates of OH + CO → H + CO2 in supercritical CO2 environment with and without additional CO2 molecule included in reactive complex. Ab initio potential energy surfaces previously reported a lower activation barrier and hence a catalytic effect of additional CO2 molecule. Here we solve the steady-state unimolecular master equations based on the Rice-Ramsperger-Kassel-Marcus theory (RRKM) and compare the rates for the two mechanisms. We found that the alternative reaction mechanism becomes faster at high pressure and low temperature, when the concentration of prereactive complex with additional CO2 molecule becomes appreciable. Therefore, this catalytic effect may be important for the chemical processes in CO2 solvent but is unlikely to play a role during combustion.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 198: 123-135, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29525563

RESUMO

Development of two-photon fluorescent probes can aid in visualizing the cellular environment. Multi-chromophore systems display complex manifolds of electronic transitions, enabling their use for optical sensing applications. Time-Dependent Density Functional Theory (TDDFT) methods allow for accurate predictions of the optical properties. These properties are related to the electronic transitions in the molecules, which include two-photon absorption cross-sections. Here we use TDDFT to understand the mechanism of aza-crown based fluorescent probes for metals sensing applications. Our findings suggest changes in local excitation in the rhodol chromophore between unbound form and when bound to the metal analyte. These changes are caused by a charge transfer from the aza-crown group and pyrazol units toward the rhodol unit. Understanding this mechanism leads to an optimized design with higher two-photon excited fluorescence to be used in medical applications.


Assuntos
Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Xantonas/química , Corantes Fluorescentes/metabolismo , Modelos Teóricos , Fótons , Teoria Quântica , Sódio/análise , Sódio/metabolismo , Solventes , Espectrofotometria/métodos
14.
J Phys Chem A ; 122(13): 3337-3345, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29504747

RESUMO

The kinetics of reaction CH3 + HO2 → CH3O + OH in supercritical carbon dioxide media at pressures from 0.3 to 1000 atm in the temperature range (600-1600) K was studied using boxed molecular dynamics simulations at QM/MM theory level with periodical boundary conditions. The mechanism of this process includes two consecutive steps: formation and decomposition of CH3OOH intermediate. We calculated the activation free energies and rate constants of each step, then used Bodenstein's quasistationary concentrations approximation to estimate the rate constants of the reaction. On the basis of the temperature dependence of the rate constants, parameters in the extended Arrhenius equation were determined. We found that reaction rate of each step, as well as overall reaction, increases with increasing CO2 pressure in the system. The most effective zone for the process is T = 1000-1200 K, and the CO2 pressure is about 100 atm.

15.
J Phys Chem A ; 122(15): 3829-3836, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29584936

RESUMO

Pyrolysis and oxidation of triethyl phosphate (TEP) were performed in the reflected shock region at temperatures of 1462-1673 K and 1213-1508 K, respectively, and at pressures near 1.3 atm. CO concentration time histories during the experiments were measured using laser absorption spectroscopy at 4580.4 nm. Experimental CO yields were compared with model predictions using the detailed organophosphorus compounds (OPC) incineration mechanism from the Lawrence Livermore National Lab (LLNL). The mechanism significantly underpredicts CO yield in TEP pyrolysis. During TEP oxidation, predicted rate of CO formation was significantly slower than the experimental results. Therefore, a new improved kinetic model for TEP combustion was developed, which was built upon the AramcoMech2.0 mechanism for C0-C2 chemistry and the existing LLNL submechanism for phosphorus chemistry. Thermochemical data of 40 phosphorus (P)-containing species were reevaluated, either using recently published group values for P-containing species or by quantum chemical calculations (CBS-QB3). The new improved model is in better agreement with the experimental CO time histories within the temperature and pressure conditions tested in this study. Sensitivity analysis was used to identify important reactions affecting CO formation, and future experimental/theoretical studies on kinetic parameters of these reactions were suggested to further improve the model. To the best of our knowledge, this is the first study of TEP kinetics in a shock tube under these conditions and the first time-resolved laser-based species time history data during its pyrolysis and oxidation.

16.
J Phys Chem A ; 122(4): 897-908, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29359563

RESUMO

Oxy-fuel combustion technology holds a great promise in both increasing the efficiency of the energy conversion and reducing environmental impact. However, effects of the higher pressures and replacement of the nitrogen with carbon dioxide diluent are not well understood at present. The title reaction is one of the most important processes in combustion. Despite numerous studies, the effects of supercritical carbon dioxide environment did not receive much attention in the past. Here we report the results of boxed molecular dynamics simulations of these effects at QM/MM theory level with periodical boundary conditions. The free energy barriers for HOCO intermediate formation and decomposition were tabulated in a wide range of pressures (1-1000 atm) and temperatures (400-1600 K). Pressure dependence of calculated rate constants for these reaction steps and overall reaction were analyzed. We found that the CO2 environment may increase these rate constants up to a factor of 25, at near critical conditions. At higher temperatures, this effect weakens significantly. Numerical values for parameters of extended Arrhenius equation, suitable for combustion kinetic modeling are reported.

17.
J Phys Chem A ; 121(33): 6243-6255, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28766943

RESUMO

Using time-dependent density functional theory (TDDFT) and sum-overstates (SOS) formalism, we predicted significant stabilization of 2P-active g-states in a compact fully symmetric porphyrin, in which all four pyrrolic fragments are fused with phathalimide residues via the ß-carbon positions. The synthesis of a soluble, nonaggregating meso-unsubstituted tetraarylphthalimidoporphyrin (TAPIP) was then developed, and the spectroscopic measurements confirmed that a strongly 2P-active state in this porphyrin is stabilized below the B (Soret) state level. Single-crystal X-ray analysis revealed near-ideally planar geometry of the TAPIP macrocycle, while its tetra-meso-arylated analogue (meso-Ar4TAPIP) was found to be highly saddled. Consistent with these structural features, Pt meso-Ar4TAPIP phosphoresces rather weakly (ϕphos = 0.05 in DMF at 22 °C), while both Pt and Pd complexes of TAPIP are highly phosphorescent (ϕphos = 0.45 and 0.23, respectively). In addition PdTAPIP exhibits non-negligible thermally activated (E-type) delayed fluorescence (ϕfl(d) ∼ 0.012). Taken together, these photophysical properties make metal complexes of meso-unsubstituted tetaarylphthalimidoporphyrins the brightest 2P-absorbing phosphorescent chromophores known to date.

18.
J Phys Chem A ; 121(30): 5681-5689, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28722407

RESUMO

The supercritical carbon dioxide diluent is used to control the temperature and to increase the efficiency in oxycombustion fossil fuel energy technology. It may affect the rates of combustion by altering mechanisms of chemical reactions, compared to the ones at low CO2 concentrations. Here, we investigate potential energy surfaces of the four elementary reactions in the CH3 + O2 reactive system in the presence of one CO2 molecule. In the case of reaction CH3 + O2 → CH2O + OH (R1 channel), van der Waals (vdW) complex formation stabilizes the transition state and reduces the activation barrier by ∼2.2 kcal/mol. Alternatively, covalently bonded CO2 may form a six-membered ring transition state and reduce the activation barrier by ∼0.6 kcal/mol. In case of reaction CH3 + O2 → CH3O + O (R2 channel), covalent participation of CO2 lowers the barrier for the rate limiting step by 3.9 kcal/mol. This is expected to accelerate the R2 process, important for the branching step of the radical chain reaction mechanism. For the reaction CH3 + O2 → CHO + H2O (R3 channel) with covalent participation of CO2, the activation barrier is lowered by 0.5 kcal/mol. The reaction CH2O + OH → CHO + H2O (R4 channel) involves hydrogen abstraction from formaldehyde by OH radical. Its barrier is reduced from 7.1 to 0.8 kcal/mol by formation of vdW complex with spectator CO2. These new findings are expected to improve the kinetic reaction mechanism describing combustion processes in supercritical CO2 medium.

19.
J Chem Phys ; 146(24): 244104, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28668052

RESUMO

The crystalline materials with nonlinear optical (NLO) properties are critically important for several technological applications, including nanophotonic and second harmonic generation devices. Urea is often considered to be a standard NLO material, due to the combination of non-centrosymmetric crystal packing and capacity for intramolecular charge transfer. Various approaches to crystal engineering of non-centrosymmetric molecular materials were reported in the literature. Here we propose using global lattice energy minimization to predict the crystal packing from the first principles. We developed a methodology that includes the following: (1) parameter derivation for polarizable force field AMOEBA; (2) local minimizations of crystal structures with these parameters, combined with the evolutionary algorithm for a global minimum search, implemented in program USPEX; (3) filtering out duplicate polymorphs produced; (4) reoptimization and final ranking based on density functional theory (DFT) with many-body dispersion (MBD) correction; and (5) prediction of the second-order susceptibility tensor by finite field approach. This methodology was applied to predict virtual urea polymorphs. After filtering based on packing similarity, only two distinct packing modes were predicted: one experimental and one hypothetical. DFT + MBD ranking established non-centrosymmetric crystal packing as the global minimum, in agreement with the experiment. Finite field approach was used to predict nonlinear susceptibility, and H-bonding was found to account for a 2.5-fold increase in molecular hyperpolarizability to the bulk value.

20.
J Phys Chem A ; 121(19): 3728-3735, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28471684

RESUMO

In oxy-fuel combustion, the pure oxygen (O2), diluted with CO2 is used as oxidant instead air. Hence, the combustion products (CO2 and H2O) are free from pollution by nitrogen oxides. Moreover, high pressures result in the near-liquid density of CO2 at supercritical state (sCO2). Unfortunately, the effects of sCO2 on the combustion kinetics are far from being understood. To assist in this understanding, in this work we are using quantum chemistry methods. Here we investigate potential energy surfaces of important combustion reactions in the presence of the carbon dioxide molecule. All transition states and reactant and product complexes are reported for three reactions: H2CO + HO2 → HCO + H2O2 (R1), 2HO2 → H2O2 + O2 (R2), and CO + OH → CO2 + H (R3). In reaction R3, covalent binding of CO2 to the OH radical and then the CO molecule opens a new pathway, including hydrogen transfer from oxygen to carbon atoms followed by CH bond dissociation. Compared to the bimolecular OH + CO mechanism, this pathway reduces the activation barrier by 5 kcal/mol and is expected to accelerate the reaction. In the case of hydroperoxyl self-reaction 2HO2 → H2O2 + O2 the intermediates, containing covalent bonds to CO2 are found not to be competitive. However, the spectator CO2 molecule can stabilize the cyclic transition state and lower the barrier by 3 kcal/mol. Formation of covalent intermediates is also discovered in the H2CO + HO2 → HCO + H2O2 reaction, but these species lead to substantially higher activation barriers, which makes them unlikely to play a role in hydrogen transfer kinetics. The van der Waals complexation with carbon dioxide also stabilizes the transition state and reduces the reaction barrier. These results indicate that the CO2 environment is likely to have a catalytic effect on combustion reactions, which needs to be included in kinetic combustion mechanisms in supercritical CO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA