Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742886

RESUMO

Central nervous system (CNS) tuberculosis is the most lethal and devastating form among the diseases caused by Mycobacterium tuberculosis. The mechanisms by which M. tuberculosis bacilli enter the CNS are still unclear. However, the BBB and the BCSFB have been proposed as possible routes of access into the brain. We previously reported that certain strains of M. tuberculosis possess an enhanced ability to cause secondary CNS infection in a mouse model of progressive pulmonary tuberculosis. Here, we evaluated the morphostructural and molecular integrity of CNS barriers. For this purpose, we analyzed through transmission electron microscopy the ultrastructure of brain parenchymal microvessels and choroid plexus epithelium from animals infected with two mycobacterial strains. Additionally, we determined the expression of junctional proteins and cytokines by immunological techniques. The results showed that the presence of M. tuberculosis induced disruption of the BCSFB but no disruption of the BBB, and that the severity of such damage was related to the strain used, suggesting that variations in the ability to cause CNS disease among distinct strains of bacteria may also be linked to their capacity to cause direct or indirect disruption of these barriers. Understanding the pathophysiological mechanisms involved in CNS tuberculosis may facilitate the establishment of new biomarkers and therapeutic targets.


Assuntos
Doenças do Sistema Nervoso Central , Tuberculose Meníngea , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo , Doenças do Sistema Nervoso Central/metabolismo , Epitélio , Camundongos
2.
Int J Mol Sci ; 23(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563545

RESUMO

Mycobacterium tuberculosis (MTB) lineage 2/Beijing is associated with high virulence and drug resistance worldwide. In Colombia, the Beijing genotype has circulated since 1997, predominantly on the pacific coast, with the Beijing-Like SIT-190 being more prevalent. This genotype conforms to a drug-resistant cluster and shows a fatal outcome in patients. To better understand virulence determinants, we performed a transcriptomic analysis with a Beijing-Like SIT-190 isolate (BL-323), and Beijing-Classic SIT-1 isolate (BC-391) in progressive tuberculosis (TB) murine model. Bacterial RNA was extracted from mice lungs on days 3, 14, 28, and 60. On average, 0.6% of the total reads mapped against MTB genomes and of those, 90% against coding genes. The strains were independently associated as determined by hierarchical cluster and multidimensional scaling analysis. Gene ontology showed that in strain BL-323 enriched functions were related to host immune response and hypoxia, while proteolysis and protein folding were enriched in the BC-391 strain. Altogether, our results suggested a differential bacterial transcriptional program when evaluating these two closely related strains. The data presented here could potentially impact the control of this emerging, highly virulent, and drug-resistant genotype.


Assuntos
Doenças dos Animais , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Animais , Pequim , Progressão da Doença , Resistência a Medicamentos , Genótipo , Humanos , Camundongos , Transcriptoma , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
3.
Front Immunol ; 11: 930, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508826

RESUMO

The global control of Tuberculosis remains elusive, and Bacillus Calmette-Guérin (BCG) -the most widely used vaccine in history-has proven insufficient for reversing this epidemic. Several authors have suggested that the mass presence of vaccinated hosts might have affected the Mycobacterium tuberculosis (MTB) population structure, and this could in turn be reflected in a prevalence of strains with higher ability to circumvent BCG-induced immunity, such as the recent Beijing genotype. The effect of vaccination on vaccine-escape variants has been well-documented in several bacterial pathogens; however the effect of the interaction between MTB strains and vaccinated hosts has never been previously described. In this study we show for the first time the interaction between MTB Beijing-genotype strains and BCG-vaccinated hosts. Using a well-controlled murine model of progressive pulmonary tuberculosis, we vaccinated BALB/c mice with two different sub-strains of BCG (BCG-Phipps and BCG-Vietnam). Following vaccination, the mice were infected with either one of three selected MTB strains. Strains were selected based on lineage, and included two Beijing-family clinical isolates (strains 46 and 48) and a well-characterized laboratory strain (H37Rv). Two months after infection, mice were euthanized and the bacteria extracted from their lungs. We characterized the genomic composite of the bacteria before and after exposure to vaccinated hosts, and also characterized the local response to the bacteria by sequencing the lung transcriptome in animals during the infection. Results from this study show that the interaction within the lungs of the vaccinated hosts results in the selection of higher-virulence bacteria, specifically for the Beijing genotype strains 46 and 48. After exposure to the BCG-induced immune response, strains 46 and 48 acquire genomic mutations associated with several virulence factors. As a result, the bacteria collected from these vaccinated hosts have an increased ability for immune evasion, as shown in both the host transcriptome and the histopathology studies, and replicates far more efficiently compared to bacteria collected from unvaccinated hosts or to the original-stock strain. Further research is warranted to ascertain the pathways associated with the genomic alterations. However, our results highlight novel host-pathogen interactions induced by exposure of MTB to BCG vaccinated hosts.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Pulmão/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Vacinação , Animais , Vacina BCG/imunologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genoma Bacteriano , Genótipo , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Mycobacterium tuberculosis/patogenicidade , Virulência
4.
Scand J Immunol ; 89(3): e12743, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30548932

RESUMO

High dose of Mycobacterium tuberculosis (Mtb) strain H37Rv administered by intratracheal injection in BALB/c mice induce progressive tuberculosis (TB). In this model, during the first month there is a temporal control of bacillary growth, in coexistence with macrophage activation, granuloma formation and Th-1 response. Then, bacterial proliferation recommences, accompanied by progressive pneumonia and decreasing expression of protective cytokines (IFN-γ and TNF-α). In this model, we studied the IL-12 gene expression kinetics and cellular source. There is a rapid and progressive IL-12 expression peaking at day 14, when granulomas start their formation and numerous macrophages show strong IL-12 immunostaining, while during progressive TB there is a significant decrease of IL-12 expression and occasional macrophages showed IL-12 immunolabeling. In the second part of this study, we determined the immunotherapeutic effect of recombinant adenoviruses that codify IL-12 (AdIL-12). Intratracheal administration of only one dose of AdIL-12 one day before Mtb infection produced significant decrease of bacterial loads, lesser pneumonia and higher expression of TNF-α, IFN-γ and iNOS. When only one dose of AdIL-12 was given in healthy mice cohoused with infected mice with highly virulent and transmissible Mtb, total prevention of infection was conferred. Moreover, when AdIL-12 was administered by intranasal route in animals suffering late active TB after 2 months of infection, a very low pulmonary bacilli burdens was detected. These experimental data confirm that IL-12 is a significant cytokine in the immune protection against Mtb, and gene therapy based in adenoviruses coding this cytokine increased protective immunity and prevent Mtb transmission.


Assuntos
Adenoviridae/genética , Terapia Genética/métodos , Interleucina-12/genética , Tuberculose Pulmonar/terapia , Animais , Imunoterapia , Interleucina-12/análise , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA