Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Oncol ; 41(2): 61, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38253759

RESUMO

Doxorubicin is a chemotherapeutic drug that generates free radical-induced toxicities. Natural agents are used to potentiate or ameliorate the toxicity of chemotherapy. None of the studies investigating whether antioxidants or prooxidants should be used with chemotherapy have addressed their efficacy in the same study. Therefore, the aim of this study was to investigate the potential synergy between doxorubicin and two natural rarely in vivo studied anticancer agents; the antioxidant "Kaempferol" and prooxidant "Piperlongumine" in Ehrlich tumor mice model. 77 albino mice were divided into 11 groups; Ehrlich ascites carcinoma cells were injected intramuscularly to develop solid tumors. After 14 days, intratumoral injections of single or combinations of free or Chitosan nanoparticles loaded with doxorubicin, Piperlongumine, and Kaempferol were performed. Tumor Characterization of nanoparticles was measured, tumors were histopathologically examined and evaluation of expression for cancer-related genes by real-time PCR. In silico molecular docking was performed to uncover potential novel targets for Piperlongumine and Kaempferol. Despite receiving half of the overall dose compared to the free drugs, the combined doxorubicin/ piperlongumine-chitosan nanoparticles treatment was the most efficient in reducing tumor volume; down-regulating Cyclin D1, and BCL2; as well as the Beclin-1, and Cyclophilin A genes modulating growth, apoptosis, autophagy, and metastasis, respectively; up-regulating the Glutathione peroxidase expression as a defense mechanism protecting from oxidative damage. When combined with doxorubicin, Kaempferol and Piperlongumine were effective against Ehrlich solid tumors. However, the combination with the Piperlongumine-loaded chitosan nanoparticles significantly enhanced its anticancer effect compared to the Kaempferol or the same free compounds.


Assuntos
Adenocarcinoma , Benzodioxóis , Quitosana , Animais , Camundongos , Simulação de Acoplamento Molecular , Quempferóis/farmacologia , Doxorrubicina/farmacologia , Simulação por Computador , Antioxidantes
2.
Sci Rep ; 13(1): 5072, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977735

RESUMO

Obesity has been associated with cognitive impairments, increasing the probability of developing dementia. Recently, zinc (Zn) supplementation has attracted an increasing attention as a therapeutic agent for cognitive disorders. Here, we investigated the potential effects of low and high doses of Zn supplementation on cognitive biomarkers and leptin signaling pathway in the hippocampus of high fat diet (HFD)-fed rats. We also explored the impact of sex difference on the response to treatment. Our results revealed a significant increase in body weight, glucose, triglycerides (TG), total cholesterol (TC), total lipids and leptin levels in obese rats as compared to controls. HFD feeding also reduced brain-derived neurotrophic factor (BDNF) levels and increased acetylcholinesterase (AChE) activity in the hippocampus of both sexes. The low and high doses of Zn supplementation improved glucose, TG, leptin, BDNF levels and AChE activity in both male and female obese rats compared to untreated ones. Additionally, downregulated expression of leptin receptor (LepR) gene and increased levels of activated signal transducer and activator of transcription 3 (p-STAT3) that observed in hippocampal tissues of obese rats were successfully normalized by both doses of Zn. In this study, the male rats were more vulnerable to HFD-induced weight gain, most of the metabolic alterations and cognition deficits than females, whereas the female obese rats were more responsive to Zn treatment. In conclusion, we suggest that Zn treatment may be effective in ameliorating obesity-related metabolic dysfunction, central leptin resistance and cognitive deficits. In addition, our findings provide evidence that males and females might differ in their response to Zn treatment.


Assuntos
Leptina , Zinco , Ratos , Feminino , Masculino , Animais , Leptina/metabolismo , Zinco/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Acetilcolinesterase/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Hipocampo/metabolismo , Suplementos Nutricionais , Cognição , Glucose/metabolismo , Dieta Hiperlipídica/efeitos adversos
3.
Life Sci ; 306: 120812, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863427

RESUMO

AIM: The chronic administration of vitamin C and E can differentially disrupt hepatic insulin molecular pathway in rats. Hence, this study evaluated their effects on lipogenesis in the liver and adipose tissue and investigated the possible involvement of microRNA (miR)-22/29a/27a in the induced impaired glucose tolerance. MAIN METHODS: Wistar rats were orally supplemented with vitamin C (100, 200, and 500 mg/kg) or vitamin E (50, 100, and 200 mg/kg) for eight months. KEY FINDINGS: Vitamin C or E at the highest doses significantly altered liver weight and index, serum and hepatic lipids, adiponectin, and liver enzymes; besides their reported unfavorable effect on glucose homeostasis. Vitamin C and E negatively affected peroxisome proliferator-activated receptor coactivator-1 (PGC-1α), sterol regulatory element-binding protein (SREBP)-1c/-2, miR-22/29a/27a expression, and adipose perilipin 1 to different extents, effects that were supported by the histopathological examination. SIGNIFICANCE: The current study provides a deeper insight into the findings of our previous study and highlights the detrimental effects of chronic vitamins supplementation on lipid metabolism. Overall, these findings emphasize the damage caused by the mindless use of supplements and reinforce the role of strict medical monitoring, particularly during the new COVID-19 era during which numerous commercial supplements are claiming to improve immunity.


Assuntos
COVID-19 , Diabetes Mellitus , MicroRNAs , Tecido Adiposo/metabolismo , Animais , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/efeitos adversos , Ácido Ascórbico/farmacologia , Diabetes Mellitus/metabolismo , Suplementos Nutricionais/efeitos adversos , Metabolismo dos Lipídeos , Fígado/metabolismo , MicroRNAs/metabolismo , Ratos , Ratos Wistar , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Vitamina E/administração & dosagem , Vitamina E/efeitos adversos , Vitaminas/administração & dosagem , Vitaminas/efeitos adversos , Vitaminas/farmacologia
4.
Biomed Pharmacother ; 148: 112776, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35272136

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder and a leading cause of disability. The current gold standard for PD treatment, L-Dopa, has limited clinical efficacy and multiple side effects. Evidence suggests that activation of α7 nicotinic acetylcholine receptors (α7nAChRs) abrogates neuronal and inflammatory insults. Here we tested whether PNU-120596 (PNU), a type II positive allosteric modulator of α7 nAChR, has a critical role in regulating motor dysfunction and neuroinflammation correlated with the associated PD dysfunction. Neuroprotective mechanisms were investigated through neurobehavioral, molecular, histopathological, and immunohistochemical studies. PNU reversed motor incoordination and hypokinesia induced via the intrastriatal injection of 6-hydroxydopamine and manifested by lower falling latency in the rotarod test, short ambulation time and low rearing incidence in open field test. Tyrosine hydroxylase immunostaining showed a significant restoration of dopaminergic neurons following PNU treatment, in addition to histopathological restoration in nigrostriatal tissues. PNU halted striatal neuroinflammation manifested as a suppressed expression of JAK2/NF-κB/GSk3ß accompanied by a parallel decline in the protein expression of TNF-α in nigrostriatal tissue denoting the modulator anti-inflammatory capacity. Moreover, the protective effects of PNU were partially reversed by the α7 nAChR antagonist, methyllycaconitine, indicating the role of α7 nAChR modulation in the mechanism of action of PNU. This is the first study to reveal the positive effects of PNU-120596 on motor derangements of PD via JAK2/NF-κB/GSk3ß/ TNF-α neuroinflammatory pathways, which could offer a potential therapeutic strategy for PD.


Assuntos
Isoxazóis/farmacologia , Doenças Neuroinflamatórias/patologia , Transtornos Parkinsonianos/patologia , Compostos de Fenilureia/farmacologia , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Hipocinesia/patologia , Janus Quinase 2/efeitos dos fármacos , NF-kappa B/efeitos dos fármacos , Oxidopamina/farmacologia , Distribuição Aleatória , Ratos , Fator de Necrose Tumoral alfa/efeitos dos fármacos
5.
Int J Pharm ; 615: 121523, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35104596

RESUMO

Vitiligo is a depigmentation disorder that affects 0.5-2% of the world population. It has a severe impact on a patient's quality of life and even causes suicidal attempts. Up to date, no curative therapy is available which have created a substantial demand for novel vitiligo treatments. Berberine (BRB) is an isoquinoline alkaloid with promising pharmacological effects. However, it suffers from poor membrane permeability hindering its topical application. The current work is the first to design and assess topical BRB-loaded hyalurosomes for targeted vitiligo treatment. BRB-hyalurosomes are hyaluronan-immobilized phospholipid nanovesicles that showed promising invitro physicochemical properties. Novel ex vivo studies were performed using full-thickness human skin to mimic its dermal application. Furthermore, in-vivo studies were conducted using a vitiligo-induced mouse model followed by biochemical, histological and immunohistochemical investigations. In addition, gene expression of skin inflammatory markers was assessed using quantitative reverse-transcription PCR. Biological studies showed significant improvement of the biochemical markers in BRB-hyalurosomes group compared to the vitiligo-model group and BRB conventional gel. It is worthy to mention that placebo hyalurosomes demonstrated significant enhancement in the biological activity confirming its intrinsic activity. Conclusively, BRB-hyalurosomes is considered a novel nanodermatological tool that paving the way for its clinical application for vitiligo treatment.


Assuntos
Berberina , Vitiligo , Animais , Expressão Gênica , Camundongos , Qualidade de Vida , Pele , Vitiligo/tratamento farmacológico
6.
Asian Pac J Cancer Prev ; 22(9): 3005-3015, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582673

RESUMO

BACKGROUND: Thymoquinone, has anti-inflammatory, anti-oxidant, and cardio protection properties. This study aimed to evaluate the radioprotective effect of thymoquinone in whole body X-irradiated rats. METHODS: This study conducted on 40 male adult Wistar albino rats randomized into the following groups: Group I: Control rats did not receive thymoquinone or ionizing radiation. Group II: Whole-body irradiated rats with 6 Gy of X-ray. Group III: Rats orally intubated with thymoquinone (10 mg/kg/day) for 7 days then subjected to whole-body irradiation with 6 Gy then supplemented with thymoquinone for another 7 days. Group IV: Rats orally intubated with thymoquinone (20 mg/kg/day) for 7 days then subjected to whole-body irradiation with 6 Gy then supplemented with thymoquinone (20 mg/kg/day) for another 7 days. LDH, CK-MB, ALT, AST, MDA, TAC, Catalase activity, GPX, GSR and GSH were measured. RESULTS: Lipid peroxidation biomarker in the blood of X-irradiated rats significantly increased and accompanied by decrease in the levels of GSH, GSR, GPX, catalase as well as TAC. Moreover, exposure to IR significantly increases cardiac and liver enzymes. However, administration of TQ to X-irradiated rats with either 10 mg/kg or 20 mg/kg have the same reform effects and significantly protects rats against adverse effects of IR. CONCLUSION: Exposure to X-ray leads to significant changes in cellular biochemical and morphological conditions. Administration of TQ before radiation treatment significantly decreases the adverse effects of IR. TQ can improve cardiac function, decrease myocardial enzyme levels and inhibit oxidative stress.


Assuntos
Benzoquinonas/farmacologia , Protetores contra Radiação/farmacologia , Animais , Masculino , Ratos , Ratos Wistar , Irradiação Corporal Total , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA