Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Neurology ; 101(14): e1412-e1423, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37580158

RESUMO

BACKGROUND AND OBJECTIVES: Alzheimer disease (AD) is neuropathologically classified into 3 corticolimbic subtypes based on the neurofibrillary tangle distribution throughout the hippocampus and association cortices: limbic predominant, typical, and hippocampal sparing. In vivo, a fourth subtype, dubbed "minimal atrophy," was identified using structural MRI. The objective of this study was to identify a neuropathologic proxy for the neuroimaging-defined minimal atrophy subtype. METHODS: We applied 2 strategies in the Florida Autopsied Multi-Ethnic (FLAME) cohort to evaluate a neuropathologic proxy for the minimal atrophy subtype. In the first strategy, we selected AD cases with a Braak tangle stage IV (Braak IV) because of the relative paucity of neocortical tangle involvement compared with Braak >IV. Braak IV cases were compared with the 3 AD subtypes. In the alternative strategy, typical AD was stratified by brain weight and cases having a relatively high brain weight (>75th percentile) were defined as minimal atrophy. RESULTS: Braak IV cases (n = 37) differed from AD subtypes (limbic predominant [n = 174], typical [n = 986], and hippocampal sparing [n = 187] AD) in having the least years of education (median 12 years, group-wise p < 0.001) and the highest brain weight (median 1,140 g, p = 0.002). Braak IV cases most resembled the limbic predominant cases owing to their high proportion of APOE ε4 carriers (75%, p < 0.001), an amnestic syndrome (100%, p < 0.001), as well as older age of cognitive symptom onset and death (median 79 and 85 years, respectively, p < 0.001). Only 5% of Braak IV cases had amygdala-predominant Lewy bodies (the lowest frequency observed, p = 0.017), whereas 32% had coexisting pathology of Lewy body disease, which was greater than the other subtypes (p = 0.005). Nearly half (47%) of the Braak IV samples had coexisting limbic predominant age-related TAR DNA-binding protein 43 encephalopathy neuropathologic change. Cases with a high brain weight (n = 201) were less likely to have amygdala-predominant Lewy bodies (14%, p = 0.006) and most likely to have Lewy body disease (31%, p = 0.042) compared with those with middle (n = 455) and low (n = 203) brain weight. DISCUSSION: The frequency of Lewy body disease was increased in both neuropathologic proxies of the minimal atrophy subtype. We hypothesize that Lewy body disease may underlie cognitive decline observed in minimal atrophy cases.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Humanos , Doença de Alzheimer/patologia , Estudos Retrospectivos , Doença por Corpos de Lewy/patologia , Emaranhados Neurofibrilares/patologia , Encéfalo/patologia , Atrofia/patologia
2.
Medicine (Baltimore) ; 102(24): e34017, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327267

RESUMO

We previously demonstrated that increased expression of the SERPINA5 gene is associated with hippocampal vulnerability in Alzheimer's disease (AD) brains. SERPINA5 was further demonstrated to be a novel tau-binding partner that colocalizes within neurofibrillary tangles. Our goal was to determine whether genetic variants in the SERPINA5 gene contributed to clinicopathologic phenotypes in AD. To screen for SERPINA5 variants, we sequenced 103 autopsy-confirmed young-onset AD cases with a positive family history of cognitive decline. To further assess the frequency of a rare missense variant, SERPINA5 p.E228Q, we screened an additional 1114 neuropathologically diagnosed AD cases. To provide neuropathologic context in AD, we immunohistochemically evaluated SERPINA5 and tau in a SERPINA5 p.E228Q variant carrier and a matched noncarrier. In the initial SERPINA5 screen, we observed 1 individual with a rare missense variant (rs140138746) that resulted in an amino acid change (p.E228Q). In our AD validation cohort, we identified an additional 5 carriers of this variant, resulting in an allelic frequency of 0.0021. There was no significant difference between SERPINA5 p.E228Q carriers and noncarriers in terms of demographic or clinicopathologic characteristics. Although not significant, on average SERPINA5 p.E228Q carriers were 5 years younger at age of disease onset than noncarriers (median: 66 [60-73] vs 71 [63-77] years, P = .351). In addition, SERPINA5 p.E228Q carriers exhibited a longer disease duration than noncarriers that approached significance (median: 12 [10-15]) vs 9 [6-12] years, P = .079). More severe neuronal loss was observed in the locus coeruleus, hippocampus, and amygdala of the SERPINA5 p.E228Q carrier compared to noncarrier, although no significant difference in SERPINA5-immunopositive lesions was observed. Throughout the AD brain in either carrier or noncarrier, areas with early pretangle pathology or burnt-out ghost tangle accumulation did not reveal SERPINA5-immunopositive neurons. Mature tangles and newly formed ghost tangles appeared to correspond well with SERPINA5-immunopositive tangle-bearing neurons. SERPINA5 gene expression was previously associated with disease phenotype; however, our findings suggest that SERPINA5 genetic variants may not be a contributing factor to clinicopathologic differences in AD. SERPINA5-immunopositive neurons appear to undergo a pathologic process that corresponded with specific levels of tangle maturity.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Estudos Transversais , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Encéfalo/patologia , Hipocampo/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Inibidor da Proteína C/metabolismo
3.
Sci Signal ; 16(773): eabm7134, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36809026

RESUMO

Inflammation driven by the NLRP3 inflammasome is coordinated through multiple signaling pathways and is regulated by subcellular organelles. Here, we tested the hypothesis that NLRP3 senses disrupted endosome trafficking to trigger inflammasome formation and inflammatory cytokine secretion. NLRP3-activating stimuli disrupted endosome trafficking and triggered localization of NLRP3 to vesicles positive for endolysosomal markers and for the inositol lipid PI4P. Chemical disruption of endosome trafficking sensitized macrophages to the NLRP3 activator imiquimod, driving enhanced inflammasome activation and cytokine secretion. Together, these data suggest that NLRP3 can sense disruptions in the trafficking of endosomal cargoes, which may explain in part the spatial activation of the NLRP3 inflammasome. These data highlight mechanisms that could be exploited in the therapeutic targeting of NLRP3.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Interleucina-1beta/metabolismo
4.
Mol Neurodegener ; 17(1): 85, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575455

RESUMO

BACKGROUND: Advances in ultrasensitive detection of phosphorylated tau (p-tau) in plasma has enabled the use of blood tests to measure Alzheimer's disease (AD) biomarker changes. Examination of postmortem brains of participants with antemortem plasma p-tau levels remains critical to understanding comorbid and AD-specific contribution to these biomarker changes. METHODS: We analyzed 35 population-based Mayo Clinic Study of Aging participants with plasma p-tau at threonine 181 and threonine 217 (p-tau181, p-tau217) available within 3 years of death. Autopsied participants included cognitively unimpaired, mild cognitive impairment, AD dementia, and non-AD neurodegenerative disorders. Global neuropathologic scales of tau, amyloid-ß, TDP-43, and cerebrovascular disease were examined. Regional digital pathology measures of tau (phosphorylated threonine 181 and 217 [pT181, pT217]) and amyloid-ß (6F/3D) were quantified in hippocampus and parietal cortex. Neurotransmitter hubs reported to influence development of tangles (nucleus basalis of Meynert) and amyloid-ß plaques (locus coeruleus) were evaluated. RESULTS: The strongest regional associations were with parietal cortex for tau burden (p-tau181 R = 0.55, p = 0.003; p-tau217 R = 0.66, p < 0.001) and amyloid-ß burden (p-tau181 R = 0.59, p < 0.001; p-tau217 R = 0.71, p < 0.001). Linear regression analysis of global neuropathologic scales explained 31% of variability in plasma p-tau181 (Adj. R2 = 0.31) and 59% in plasma p-tau217 (Adj. R2 = 0.59). Neither TDP-43 nor cerebrovascular disease global scales independently contributed to variability. Global scales of tau pathology (ß-coefficient = 0.060, p = 0.016) and amyloid-ß pathology (ß-coefficient = 0.080, p < 0.001) independently predicted plasma p-tau217 when modeled together with co-pathologies, but only amyloid-ß (ß-coefficient = 0.33, p = 0.021) significantly predicted plasma p-tau181. While nucleus basalis of Meynert neuron count/mm2 was not associated with plasma p-tau levels, a lower locus coeruleus neuron count/mm2 was associated with higher plasma p-tau181 (R = -0.50, p = 0.007) and higher plasma p-tau217 (R = -0.55, p = 0.002). Cognitive scores (Adj. R2 = 0.25-0.32) were predicted by the global tau scale, but not by the global amyloid-ß scale or plasma p-tau when modeled simultaneously. CONCLUSIONS: Higher soluble plasma p-tau levels may be the result of an intersection between insoluble deposits of amyloid-ß and tau accumulation in brain, and may be associated with locus coeruleus degeneration.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Locus Cerúleo/metabolismo , Locus Cerúleo/patologia , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/patologia , Biomarcadores
5.
Acta Neuropathol ; 144(1): 27-44, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35697880

RESUMO

Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and Alzheimer's disease neuropathologic change (ADNC) are each associated with substantial cognitive impairment in aging populations. However, the prevalence of LATE-NC across the full range of ADNC remains uncertain. To address this knowledge gap, neuropathologic, genetic, and clinical data were compiled from 13 high-quality community- and population-based longitudinal studies. Participants were recruited from United States (8 cohorts, including one focusing on Japanese-American men), United Kingdom (2 cohorts), Brazil, Austria, and Finland. The total number of participants included was 6196, and the average age of death was 88.1 years. Not all data were available on each individual and there were differences between the cohorts in study designs and the amount of missing data. Among those with known cognitive status before death (n = 5665), 43.0% were cognitively normal, 14.9% had MCI, and 42.4% had dementia-broadly consistent with epidemiologic data in this age group. Approximately 99% of participants (n = 6125) had available CERAD neuritic amyloid plaque score data. In this subsample, 39.4% had autopsy-confirmed LATE-NC of any stage. Among brains with "frequent" neuritic amyloid plaques, 54.9% had comorbid LATE-NC, whereas in brains with no detected neuritic amyloid plaques, 27.0% had LATE-NC. Data on LATE-NC stages were available for 3803 participants, of which 25% had LATE-NC stage > 1 (associated with cognitive impairment). In the subset of individuals with Thal Aß phase = 0 (lacking detectable Aß plaques), the brains with LATE-NC had relatively more severe primary age-related tauopathy (PART). A total of 3267 participants had available clinical data relevant to frontotemporal dementia (FTD), and none were given the clinical diagnosis of definite FTD nor the pathological diagnosis of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). In the 10 cohorts with detailed neurocognitive assessments proximal to death, cognition tended to be worse with LATE-NC across the full spectrum of ADNC severity. This study provided a credible estimate of the current prevalence of LATE-NC in advanced age. LATE-NC was seen in almost 40% of participants and often, but not always, coexisted with Alzheimer's disease neuropathology.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doenças do Sistema Nervoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Amiloide , Autopsia , Proteínas de Ligação a DNA , Humanos , Masculino , Placa Amiloide/patologia
6.
Acta Neuropathol Commun ; 10(1): 16, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123591

RESUMO

Multi-compartment modelling of white matter microstructure using Neurite Orientation Dispersion and Density Imaging (NODDI) can provide information on white matter health through neurite density index and free water measures. We hypothesized that cerebrovascular disease, Alzheimer's disease, and TDP-43 proteinopathy would be associated with distinct NODDI readouts of white matter damage which would be informative for identifying the substrate for cognitive impairment. We identified two independent cohorts with multi-shell diffusion MRI, amyloid and tau PET, and cognitive assessments: specifically, a population-based cohort of 347 elderly randomly sampled from the Olmsted county, Minnesota, population and a clinical research-based cohort of 61 amyloid positive Alzheimer's dementia participants. We observed an increase in free water and decrease in neurite density using NODDI measures in the genu of the corpus callosum associated with vascular risk factors, which we refer to as the vascular white matter component. Tau PET signal reflective of 3R/4R tau deposition was associated with worsening neurite density index in the temporal white matter where we measured parahippocampal cingulum and inferior temporal white matter bundles. Worsening temporal white matter neurite density was associated with (antemortem confirmed) FDG TDP-43 signature. Post-mortem neuropathologic data on a small subset of this sample lend support to our findings. In the community-dwelling cohort where vascular disease was more prevalent, the NODDI vascular white matter component explained variability in global cognition (partial R2 of free water and neurite density = 8.3%) and MMSE performance (8.2%) which was comparable to amyloid PET (7.4% for global cognition and 6.6% for memory). In the AD dementia cohort, tau deposition was the greatest contributor to cognitive performance (9.6%), but there was also a non-trivial contribution of the temporal white matter component (8.5%) to cognitive performance. The differences observed between the two cohorts were reflective of their distinct clinical composition. White matter microstructural damage assessed using advanced diffusion models may add significant value for distinguishing the underlying substrate (whether cerebrovascular disease versus neurodegenerative disease caused by tau deposition or TDP-43 pathology) for cognitive impairment in older adults.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Transtornos Cerebrovasculares/patologia , Disfunção Cognitiva/patologia , Substância Branca/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Transtornos Cerebrovasculares/complicações , Transtornos Cerebrovasculares/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Estudos de Coortes , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Masculino , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Proteinopatias TDP-43/complicações , Proteinopatias TDP-43/diagnóstico por imagem , Proteinopatias TDP-43/patologia , Tauopatias/complicações , Tauopatias/diagnóstico por imagem , Tauopatias/patologia , Substância Branca/diagnóstico por imagem
7.
Nat Commun ; 12(1): 2311, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875655

RESUMO

Selective vulnerability of different brain regions is seen in many neurodegenerative disorders. The hippocampus and cortex are selectively vulnerable in Alzheimer's disease (AD), however the degree of involvement of the different brain regions differs among patients. We classified corticolimbic patterns of neurofibrillary tangles in postmortem tissue to capture extreme and representative phenotypes. We combined bulk RNA sequencing with digital pathology to examine hippocampal vulnerability in AD. We identified hippocampal gene expression changes associated with hippocampal vulnerability and used machine learning to identify genes that were associated with AD neuropathology, including SERPINA5, RYBP, SLC38A2, FEM1B, and PYDC1. Further histologic and biochemical analyses suggested SERPINA5 expression is associated with tau expression in the brain. Our study highlights the importance of embracing heterogeneity of the human brain in disease to identify disease-relevant gene expression.


Assuntos
Doença de Alzheimer/genética , Córtex Cerebral/metabolismo , Perfilação da Expressão Gênica/métodos , Hipocampo/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Autopsia , Córtex Cerebral/patologia , Feminino , Hipocampo/patologia , Humanos , Aprendizado de Máquina , Masculino , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo , Inibidor da Proteína C/genética , Inibidor da Proteína C/metabolismo , RNA-Seq/métodos , Proteínas tau/genética , Proteínas tau/metabolismo
8.
Acta Neuropathol ; 141(5): 631-650, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33427939

RESUMO

Alzheimer's disease (AD) is neuropathologically characterized by the intracellular accumulation of hyperphosphorylated tau and the extracellular deposition of amyloid-ß plaques, which affect certain brain regions in a progressive manner. The locus coeruleus (LC), a small nucleus in the pons of the brainstem, is widely recognized as one of the earliest sites of neurofibrillary tangle formation in AD. Patients with AD exhibit significant neuronal loss in the LC, resulting in a marked reduction of its size and function. The LC, which vastly innervates several regions of the brain, is the primary source of the neurotransmitter norepinephrine (NE) in the central nervous system. Considering that NE is a major modulator of behavior, contributing to neuroprotection and suppression of neuroinflammation, degeneration of the LC in AD and the ultimate dysregulation of the LC-NE system has detrimental effects in the brain. In this review, we detail the neuroanatomy and function of the LC, its essential role in neuroprotection, and how this is dysregulated in AD. We discuss AD-related neuropathologic changes in the LC and mechanisms by which LC neurons are selectively vulnerable to insult. Further, we elucidate the neurotoxic effects of LC de-innervation both locally and at projection sites, and how this augments disease pathology, progression and severity. We summarize how preservation of the LC-NE system could be used in the treatment of AD and other neurodegenerative diseases affected by LC degeneration.


Assuntos
Doença de Alzheimer/patologia , Locus Cerúleo/patologia , Degeneração Neural/patologia , Animais , Humanos
9.
Acta Neuropathol ; 137(2): 227-238, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30604226

RESUMO

TDP-43 is present in a high proportion of aged brains that do not meet criteria for frontotemporal lobar degeneration (FTLD). We determined whether there are distinct TDP-43 types in non-FTLD brains. From a cohort of 553 brains (Braak neurofibrillary tangle (NFT) stage 0-VI), excluding cases meeting criteria for FTLD, we identified those that had screened positive for TDP-43. We reviewed 14 different brain regions in these TDP-43 positive cases and classified them into those with "typical" TDP-43 immunoreactive inclusions (TDP type-α), and those in which TDP-43 immunoreactivity was adjacent to/associated with NFTs in the same neuron (TDP type-ß). We compared pathological, genetic (APOE4, TMEM106B and GRN variants), neuroimaging and clinical data between types, as well as compared neuroimaging between types and a group of TDP-43 negative cases (n = 309). Two-hundred forty-one cases were classified as TDP type-α (n = 131, 54%) or TDP type-ß (n = 110, 46%). Type-α cases were older than type-ß at death (median 89 years vs. 87 years; p = 0.02). Hippocampal sclerosis was present in 78 (60%) type-α cases and 16 (15%) type-ß cases (p < 0.001). Type-α cases showed a pattern of widespread TDP-43 deposition commonly extending into temporal, frontal and brainstem regions (84% TDP-43 stage 4-6) while in type-ß cases deposition was predominantly limbic, located in amygdala, entorhinal cortex and subiculum of the hippocampus (84% TDP-43 stages 1-3) (p < 0.001). There was a difference in the frequency of TMEM106B protective (GG) and risk (CC) haplotypes (SNP rs3173615 encoding p.T185S) in type-α cases compared to type-ß cases (GG/CG/CC: 8%/42%/50% vs. 24%/49%/27%; p = 0.01). Type-α cases had smaller amygdala (- 10.6% [- 17.6%, - 3.5%]; p = 0.003) and hippocampal (- 14.4% [- 21.6%, - 7.3%]; p < 0.001) volumes on MRI at death compared to type-ß cases, although both types had smaller amygdala and hippocampal volumes compared to TDP-43 negative cases (- 7.77%, - 21.6%; p < 0.001). These findings demonstrate that there is distinct heterogeneity of TDP-43 deposition in non-FTLD brains.


Assuntos
Proteínas de Ligação a DNA/genética , Demência Frontotemporal/genética , Degeneração Lobar Frontotemporal/genética , Mutação/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Demência Frontotemporal/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/patologia
10.
Acta Neuropathol Commun ; 6(1): 42, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855382

RESUMO

Loss-of-function mutations in progranulin (GRN) and a non-coding (GGGGCC)n hexanucleotide repeat expansions in C9ORF72 are the two most common genetic causes of frontotemporal lobar degeneration with aggregates of TAR DNA binding protein 43 (FTLD-TDP). TMEM106B encodes a type II transmembrane protein with unknown function. Genetic variants in TMEM106B associated with reduced TMEM106B levels have been identified as disease modifiers in individuals with GRN mutations and C9ORF72 expansions. Recently, loss of Tmem106b has been reported to protect the FTLD-like phenotypes in Grn-/- mice. Here, we generated Tmem106b-/- mice and examined whether loss of Tmem106b could rescue FTLD-like phenotypes in an AAV mouse model of C9ORF72-repeat induced toxicity. Our results showed that neither partial nor complete loss of Tmem106b was able to rescue behavioral deficits induced by the expression of (GGGGCC)66 repeats (66R). Loss of Tmem106b also failed to ameliorate 66R-induced RNA foci, dipeptide repeat protein formation and pTDP-43 pathological burden. We further found that complete loss of Tmem106b increased astrogliosis, even in the absence of 66R, and failed to rescue 66R-induced neuronal cell loss, whereas partial loss of Tmem106b significantly rescued the neuronal cell loss but not neuroinflammation induced by 66R. Finally, we showed that overexpression of 66R did not alter expression of Tmem106b and other lysosomal genes in vivo, and subsequent analyses in vitro found that transiently knocking down C9ORF72, but not overexpression of 66R, significantly increased TMEM106B and other lysosomal proteins. In summary, reducing Tmem106b levels failed to rescue FTLD-like phenotypes in a mouse model mimicking the toxic gain-of-functions associated with overexpression of 66R. Combined with the observation that loss of C9ORF72 and not 66R overexpression was associated with increased levels of TMEM106B, this work suggests that the protective TMEM106B haplotype may exert its effect in expansion carriers by counteracting lysosomal dysfunction resulting from a loss of C9ORF72.


Assuntos
Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/terapia , Regulação da Expressão Gênica/genética , Proteínas de Membrana/deficiência , Proteínas Supressoras de Tumor/deficiência , Animais , Proteína C9orf72/metabolismo , Linhagem Celular Transformada , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Comportamento Exploratório , Medo/psicologia , Degeneração Lobar Frontotemporal/psicologia , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glicerofosfatos , Humanos , Relações Interpessoais , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução Genética , Proteínas Supressoras de Tumor/genética
11.
Neuron ; 95(4): 808-816.e9, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28817800

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are age-related neurodegenerative disorders with shared genetic etiologies and overlapping clinical and pathological features. Here we studied a novel ALS/FTD family and identified the P362L mutation in the low-complexity domain (LCD) of T cell-restricted intracellular antigen-1 (TIA1). Subsequent genetic association analyses showed an increased burden of TIA1 LCD mutations in ALS patients compared to controls (p = 8.7 × 10-6). Postmortem neuropathology of five TIA1 mutations carriers showed a consistent pathological signature with numerous round, hyaline, TAR DNA-binding protein 43 (TDP-43)-positive inclusions. TIA1 mutations significantly increased the propensity of TIA1 protein to undergo phase transition. In live cells, TIA1 mutations delayed stress granule (SG) disassembly and promoted the accumulation of non-dynamic SGs that harbored TDP-43. Moreover, TDP-43 in SGs became less mobile and insoluble. The identification of TIA1 mutations in ALS/FTD reinforces the importance of RNA metabolism and SG dynamics in ALS/FTD pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Mutação/genética , Proteínas de Ligação a Poli(A)/genética , Adulto , Idoso , Proteínas de Ligação a DNA/metabolismo , Saúde da Família , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Proteína FUS de Ligação a RNA/metabolismo , Estresse Fisiológico/fisiologia , Antígeno-1 Intracelular de Células T , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA