Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 21(7): 1440-1453, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37032497

RESUMO

Previous work has demonstrated that plants can be used as production platforms for molecules used in health, medicine, and agriculture. Production has been exemplified in both stable transgenic plants and using transient expression strategies. In particular, species of Nicotiana have been engineered to produce a range of useful molecules, including insect sex pheromones, which are valued for species-specific control of agricultural pests. To date, most studies have relied on strong constitutive expression of all pathway genes. However, work in microbes has demonstrated that yields can be improved by controlling and balancing gene expression. Synthetic regulatory elements that provide control over the timing and levels of gene expression are therefore useful for maximizing yields from heterologous biosynthetic pathways. In this study, we demonstrate the use of pathway engineering and synthetic genetic elements for controlling the timing and levels of production of Lepidopteran sex pheromones in Nicotiana benthamiana. We demonstrate that copper can be used as a low-cost molecule for tightly regulated inducible expression. Further, we show how construct architecture influences relative gene expression and, consequently, product yields in multigene constructs. We compare a number of synthetic orthogonal regulatory elements and demonstrate maximal yields from constructs in which expression is mediated by dCas9-based synthetic transcriptional activators. The approaches demonstrated here provide new insights into the heterologous reconstruction of metabolic pathways in plants.


Assuntos
Nicotiana , Atrativos Sexuais , Animais , Nicotiana/genética , Nicotiana/metabolismo , Atrativos Sexuais/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Insetos
2.
Front Plant Sci ; 13: 941338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388501

RESUMO

Plant biofactories are a promising platform for sustainable production of high-value compounds, among which are insect sex pheromones, a green alternative to conventional insecticides in agriculture. Recently, we have constructed transgenic Nicotiana benthamiana plants ("Sexy Plants", SxP) that successfully produce a blend of moth (Lepidoptera) sex pheromone compounds (Z)-11-hexadecen-1-ol and (Z)-11-hexadecenyl acetate. However, efficient biosynthesis of sex pheromones resulted in growth and developmental penalty, diminishing the potential for commercial use of SxP in biomanufacturing. To gain insight into the underlying molecular responses, we analysed the whole-genome transcriptome and evaluated it in relation to growth and pheromone production in low- and high-producing transgenic plants of v1.0 and v1.2 SxP lines. In our study, high-producing SxPv1.2 plants accumulated the highest amounts of pheromones but still maintained better growth compared to v1.0 high producers. For an in-depth biological interpretation of the transcriptomic data, we have prepared a comprehensive functional N. benthamiana genome annotation as well as gene translations to Arabidopsis thaliana, enabling functional information transfer by using Arabidopsis knowledge networks. Differential gene expression analysis, contrasting pheromone producers to wild-type plants, revealed that while only a few genes were differentially regulated in low-producing plants, high-producing plants exhibited vast transcriptional reprogramming. They showed signs of stress-like response, manifested as downregulation of photosynthesis-related genes and significant differences in expression of hormonal signalling and secondary metabolism-related genes, the latter presumably leading to previously reported volatilome changes. Further network analyses confirmed stress-like response with activation of jasmonic acid and downregulation of gibberellic acid signalling, illuminating the possibility that the observed growth penalty was not solely a consequence of a higher metabolic burden imposed upon constitutive expression of a heterologous biosynthetic pathway, but rather the result of signalling pathway perturbation. Our work presents an example of comprehensive transcriptomic analyses of disadvantageous stress signalling in N. benthamiana biofactory that could be applied to other bioproduction systems.

3.
Plant Biotechnol J ; 20(1): 25-36, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34416790

RESUMO

Arthropod crop pests are responsible for 20% of global annual crop losses, a figure predicted to increase in a changing climate where the ranges of numerous species are projected to expand. At the same time, many insect species are beneficial, acting as pollinators and predators of pest species. For thousands of years, humans have used increasingly sophisticated chemical formulations to control insect pests but, as the scale of agriculture expanded to meet the needs of the global population, concerns about the negative impacts of agricultural practices on biodiversity have grown. While biological solutions, such as biological control agents and pheromones, have previously had relatively minor roles in pest management, biotechnology has opened the door to numerous new approaches for controlling insect pests. In this review, we look at how advances in synthetic biology and biotechnology are providing new options for pest control. We discuss emerging technologies for engineering resistant crops and insect populations and examine advances in biomanufacturing that are enabling the production of new products for pest control.


Assuntos
Controle Biológico de Vetores , Biologia Sintética , Agricultura , Animais , Produtos Agrícolas/genética , Controle de Insetos , Insetos
4.
Front Plant Sci ; 12: 696272, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276746

RESUMO

Given the little variability among commercialised eggplants mainly in developed countries, exploring, and structuring of traditional varieties germplasm collections have become a key element for extending ecotypes and promoting biodiversity preservation and consumption. Thirty-one eggplant landraces from Spain were characterised with 22 quantitative and 14 qualitative conventional morphological descriptors. Landraces were grouped based on their fruit skin colour (black-purple, striped, white, and reddish). Landraces B7, B20, and B24 were left out for their distinctive fruit characteristics. Wide variation for plant, leaf, flower, and fruit phenology traits was observed across the local landraces, and fruit descriptors were considered the most important ones. In a second experiment, landraces, B14, B16, and B17 were selected to determine fruit quality. By contemplating the benefits provided by antioxidants and sugars for human health, pulp antioxidant capacity, total phenolic, ascorbic acid, carotenoid, flavonoid, and total sugar content were determined. Significant differences were observed across these three landraces, and B14 was highlighted for its antioxidant properties, while B17 stood out for its high sugar content. B16 did not stand out for any traits. The results indicate the wide variability in eggplants for their phenotypic and nutritional characteristics, which emphasises the importance of traditional varieties as the main source of agricultural biodiversity.

5.
Biodes Res ; 2021: 9891082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37849952

RESUMO

Plant-based bioproduction of insect sex pheromones has been proposed as an innovative strategy to increase the sustainability of pest control in agriculture. Here, we describe the engineering of transgenic plants producing (Z)-11-hexadecenol (Z11-16OH) and (Z)-11-hexadecenyl acetate (Z11-16OAc), two main volatile components in many Lepidoptera sex pheromone blends. We assembled multigene DNA constructs encoding the pheromone biosynthetic pathway and stably transformed them into Nicotiana benthamiana plants. The constructs contained the Amyelois transitella AtrΔ11 desaturase gene, the Helicoverpa armigera fatty acyl reductase HarFAR gene, and the Euonymus alatus diacylglycerol acetyltransferase EaDAct gene in different configurations. All the pheromone-producing plants showed dwarf phenotypes, the severity of which correlated with pheromone levels. All but one of the recovered lines produced high levels of Z11-16OH, but very low levels of Z11-16OAc, probably as a result of recurrent truncations at the level of the EaDAct gene. Only one plant line (SxPv1.2) was recovered that harboured an intact pheromone pathway and which produced moderate levels of Z11-16OAc (11.8 µg g-1 FW) and high levels of Z11-16OH (111.4 µg g-1). Z11-16OAc production was accompanied in SxPv1.2 by a partial recovery of the dwarf phenotype. SxPv1.2 was used to estimate the rates of volatile pheromone release, which resulted in 8.48 ng g-1 FW per day for Z11-16OH and 9.44 ng g-1 FW per day for Z11-16OAc. Our results suggest that pheromone release acts as a limiting factor in pheromone biodispenser strategies and establish a roadmap for biotechnological improvements.

6.
Plant Cell Environ ; 43(10): 2523-2539, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32519347

RESUMO

Seed longevity is a polygenic trait of relevance for agriculture and for understanding the effect of environment on the ageing of biological systems. In order to identify novel longevity genes, we have phenotyped the natural variation of 270 ecotypes of the model plant, Arabidopsis thaliana, for natural ageing and for three accelerated ageing methods. Genome-wide analysis, using publicly available single-nucleotide polymorphisms (SNPs) data sets, identified multiple genomic regions associated with variation in seed longevity. Reverse genetics of 20 candidate genes in Columbia ecotype resulted in seven genes positive for seed longevity (PSAD1, SSLEA, SSTPR, DHAR1, CYP86A8, MYB47 and SPCH) and five negative ones (RBOHD, RBOHE, RBOHF, KNAT7 and SEP3). In this uniform genetic background, natural and accelerated ageing methods provided similar results for seed-longevity in knock-out mutants. The NADPH oxidases (RBOHs), the dehydroascorbate reductase (DHAR1) and the photosystem I subunit (PSAD1) highlight the important role of oxidative stress on seed ageing. The cytochrome P-450 hydroxylase, CYP86A8, and the transcription factors, MYB47, KNAT7 and SEP3, support the protecting role of the seed coat during seed ageing.


Assuntos
Arabidopsis/genética , Genes de Plantas/genética , Longevidade/genética , Estresse Oxidativo/genética , Sementes/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Microscopia Confocal , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Genética Reversa , Sementes/fisiologia , Sementes/ultraestrutura , Transcriptoma
7.
Front Plant Sci ; 11: 612781, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424908

RESUMO

The current CoVid-19 crisis is revealing the strengths and the weaknesses of the world's capacity to respond to a global health crisis. A critical weakness has resulted from the excessive centralization of the current biomanufacturing capacities, a matter of great concern, if not a source of nationalistic tensions. On the positive side, scientific data and information have been shared at an unprecedented speed fuelled by the preprint phenomena, and this has considerably strengthened our ability to develop new technology-based solutions. In this work, we explore how, in a context of rapid exchange of scientific information, plant biofactories can serve as a rapid and easily adaptable solution for local manufacturing of bioreagents, more specifically recombinant antibodies. For this purpose, we tested our ability to produce, in the framework of an academic lab and in a matter of weeks, milligram amounts of six different recombinant monoclonal antibodies against SARS-CoV-2 in Nicotiana benthamiana. For the design of the antibodies, we took advantage, among other data sources, of the DNA sequence information made rapidly available by other groups in preprint publications. mAbs were engineered as single-chain fragments fused to a human gamma Fc and transiently expressed using a viral vector. In parallel, we also produced the recombinant SARS-CoV-2 N protein and the receptor binding domain (RBD) of the Spike protein in planta and used them to test the binding specificity of the recombinant mAbs. Finally, for two of the antibodies, we assayed a simple scale-up production protocol based on the extraction of apoplastic fluid. Our results indicate that gram amounts of anti-SARS-CoV-2 antibodies could be easily produced in little more than 6 weeks in repurposed greenhouses with little infrastructure requirements using N. benthamiana as production platform. Similar procedures could be easily deployed to produce diagnostic reagents and, eventually, could be adapted for rapid therapeutic responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA