Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 898: 405-21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27161238

RESUMO

The role of mitochondria in intracellular Ca(2+) signaling relies mainly in its capacity to take up Ca(2+) from the cytosol and thus modulate the cytosolic [Ca(2+)]. Because of the low Ca(2+)-affinity of the mitochondrial Ca(2+)-uptake system, this organelle appears specially adapted to take up Ca(2+) from local high-Ca(2+) microdomains and not from the bulk cytosol. Mitochondria would then act as local Ca(2+) buffers in cellular regions where high-Ca(2+) microdomains form, that is, mainly close to the cytosolic mouth of Ca(2+) channels, both in the plasma membrane and in the endoplasmic reticulum (ER). One of the first targets proposed already in the 1990s to be regulated in this way by mitochondria were the store-operated Ca(2+) channels (SOCE). Mitochondria, by taking up Ca(2+) from the region around the cytosolic mouth of the SOCE channels, would prevent its slow Ca(2+)-dependent inactivation, thus keeping them active for longer. Since then, evidence for this mechanism has accumulated mainly in immunitary cells, where mitochondria actually move towards the immune synapse during T cell activation. However, in many other cell types the available data indicate that the close apposition between plasma and ER membranes occurring during SOCE activation precludes mitochondria from getting close to the Ca(2+)-entry sites. Alternative pathways for mitochondrial modulation of SOCE, both Ca(2+)-dependent and Ca(2+)-independent, have also been proposed, but further work will be required to elucidate the actual mechanisms at work. Hopefully, the recent knowledge of the molecular nature of the mitochondrial Ca(2+) uniporter will allow soon more precise studies on this matter.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Humanos , Transporte de Íons , Frações Subcelulares/metabolismo
2.
Biochim Biophys Acta ; 1858(6): 1110-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26903221

RESUMO

MICU1 and MICU2 are the main regulators of the mitochondrial Ca(2+)-uniporter (MCU), but their precise functional role is still under debate. We show here that MICU2 behaves as a pure inhibitor of MCU at low cytosolic [Ca(2+)] ([Ca(2+)]c), though its effects decrease as [Ca(2+)]c is increased and disappear above 7 µM. Regarding MICU1, studying its effects is more difficult because knockdown of MICU1 leads also to loss of MICU2. However, while knockdown of MICU2 induces only a persistent increase in mitochondrial Ca(2+) uptake, knockdown of MICU1 also induces a peculiar use-dependent transient activation of MCU that cannot be attributed to the parallel loss of MICU2. Therefore, MICU1 is endowed with a specific inhibitory effect on MCU at low [Ca(2+)]c, separate and kinetically different from that of MICU2. On the other hand, we and others have shown previously that MICU1 activates MCU at [Ca(2+)]c above 2.5 µM. Thus, MICU1 has a double role in MCU regulation, inhibitory at low [Ca(2+)]c and activatory at high [Ca(2+)]c.


Assuntos
Canais de Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Cálcio/metabolismo , Proteínas de Transporte de Cátions/fisiologia , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte de Cátions/genética , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/genética
3.
Biochem J ; 458(1): 33-40, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24313810

RESUMO

MICU1 (Ca2+ uptake protein 1, mitochondrial) is an important regulator of the MCU (Ca2+ uniporter protein, mitochondrial) that has been shown recently to act as a gatekeeper of the MCU at low [Ca2+]c (cytosolic [Ca2+]). In the present study we have investigated in detail the dynamics of MCU activity after shRNA-knockdown of MICU1 and we have found several new interesting properties. In MICU1-knockdown cells, the rate of mitochondrial Ca2+ uptake was largely increased at a low [Ca2+]c (<2 µM), but it was decreased at a high [Ca2+]c (>4 µM). In the 2-4 µM range a mixed behaviour was observed, where mitochondrial Ca2+ uptake started earlier in the MICU1-silenced cells, but at a lower rate than in the controls. The sensitivity of Ca2+ uptake to Ruthenium Red and Ru360 was similar at both high and low [Ca2+]c, indicating that the same Ca2+ pathway was operating in both cases. The increased Ca2+-uptake rate observed at a [Ca2+]c below 2 µM was transient and became inhibited during Ca2+ entry. Development of this inhibition was slow, requiring 5 min for completion, and was hardly reversible. Therefore MICU1 acts both as a MCU gatekeeper at low [Ca2+]c and as a cofactor necessary to reach the maximum Ca2+-uptake rate at high [Ca2+]c. Moreover, in the absence of MICU1, the MCU becomes sensitive to a slow-developing inhibition that requires prolonged increases in [Ca2+]c in the low micromolar range.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte de Cátions/genética , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/genética
4.
Immunol Lett ; 134(2): 113-21, 2011 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-20951740

RESUMO

Cell surface molecules are present on several lymphocyte subsets and are differentially expressed during lymphocyte development and activation. Human Leukocyte Differentiation Antigen (HLDA) Workshops have played an essential role in the identification and characterization of the molecules found in the membrane of hematopoietic cells. In the present study, the reactivities of sixty-five monoclonal antibodies (mAbs) submitted to the HLDA9 Workshop were tested. A multicolor flow cytometric analysis was performed in order to determine the expression profiles of these proteins on peripheral blood lymphocytes, hematopoietic cell lines, and tonsil B-cells. The following B-cell subsets were assessed: mature naïve, pre-germinal center, germinal center, unswitched and switched memory, plasmablasts, and plasma cells. Immunohistochemical analysis on formalin-fixed paraffin-embedded tonsils was also carried out. Remarkably, a large group of immunoglobulin family inhibitory cell surface molecules were observed on several distinct B-cell subsets including: CD152 (CTLA4), CD170 (Siglec-5), CD272 (BTLA), CD305 (LAIR1), CD307d (FCRL4), and CD329 (Siglec-9). The following molecules were also found to be differentially expressed on B-cell subsets (CD80, CD185 (CXCR5), CD196 (CCR6), CD270 (TNFRSF14), CD307a-c (FCRL1-3), CD319 (SLAMF7) and CD362 (SDC2)) or delineated B-cell subpopulations (CD126 (IL-6R), CD255 (TNFSF12), CD264 (TNFRSF10D), CD267 (TNFRSF13B) and CD329 (Siglec-9)). Of these, only CD307a, CD307b, and CD307d presented a B-cell-specific expression pattern. Our results show that several of these molecules are capable of further subdividing the known B-cell subsets and, in fact, may represent new markers for research, diagnosis, and eventually targets for the treatment of B-cell malignancies and autoimmune diseases.


Assuntos
Subpopulações de Linfócitos B/imunologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Proteínas de Membrana/imunologia , Plasmócitos/imunologia , Anticorpos Monoclonais/imunologia , Subpopulações de Linfócitos B/citologia , Células HL-60 , Humanos , Imunoglobulinas/genética , Imunoglobulinas/imunologia , Imunofenotipagem , Células Jurkat , Células K562 , Linfócitos T/imunologia , Células U937
5.
Immunol Lett ; 134(2): 104-12, 2011 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-20933010

RESUMO

B cells not only play a pivotal role in humoral immunity, but also are involved in a broad spectrum of immune responses, including antigen presentation and T-cell function regulation. The identification of cell-surface CD molecules derived from a series of Human Leukocyte Differentiation Antigens (HLDA) Workshops has been instrumental to the discovery and functional characterization of human B-cell populations. Moreover, many events regulating B-cell development, activation, and effector functions are orchestrated by these cell-surface molecules. During the Ninth HLDA Workshop (HLDA9) eighteen new CDs were allocated to cell-surface molecules expressed on B cells: CD210a (IL10RA), CD215 (IL15RA), CD270 (TNFRSF14), CD307a (FCRL1), CD307b (FCRL2), CD307c (FCRL3), CD307d (FCRL4), CD351 (FCAMR), CD352 (SLAMF6), CD353 (SLAMF8), CD354 (TREM1), CD355 (CRTAM), CD357 (TNFRSF18), CD358 (TNFRSF21), CD360 (IL21RA), CD361 (EVI2B), CD362 (SDC2), and CD363 (S1PR1). Here we present their expression patterns on leukocytes, including T lymphocytes, NK cells, granulocytes, monocytes, plasmacytoid and monocyte-derived dendritic cells, and several B-cell subsets. These new CD molecules are expressed on B cells at various stages of differentiation; from bone marrow precursor pro-B cells to plasma cells. Three of them, CD307a, CD307b and CD307d, exhibit a B-cell restricted expression pattern, whereas the rest are also present on other leukocytes. In this paper we also review the structural characteristics, expression, and function of these new CD molecules. The availability of monoclonal antibodies directed against novel B cell-surface molecules will have broad implications not only for B-cell biology, but also for the development of new diagnostic and therapeutic tools.


Assuntos
Antígenos CD/imunologia , Linfócitos B/imunologia , Animais , Anticorpos Monoclonais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Humanos , Imunoglobulinas/genética , Imunoglobulinas/imunologia , Camundongos , Tonsila Palatina/citologia , Tonsila Palatina/imunologia , Receptores de Citocinas/genética , Receptores de Citocinas/imunologia , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/imunologia
6.
Immunol Lett ; 134(2): 129-36, 2011 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-20933013

RESUMO

The SLAM (CD150) family receptors are leukocyte cell-surface glycoproteins involved in leukocyte activation. These molecules and their adaptor protein SAP contribute to the effective germinal center formation, generation of high-affinity antibody-secreting plasma cells, and memory B cells, thereby facilitating long-term humoral immune response. Multi-color flow cytometric analysis was performed to determine the expression of CD48 (SLAMF2), CD84 (SLAMF5), CD150 (SLAM or SLAMF1), CD229 (Ly9 or SLAMF3), CD244 (2B4 or SLAMF4), CD319 (CRACC, CS1, or SLAMF7), and CD352 (NTB-A or SLAMF6) on human cell lines and B-cell subsets. The following subsets were assessed: pro-B, pre-B, immature-B, and mature-B cells from bone marrow; transitional and B1/B2 subsets from peripheral blood; and naïve, pre-germinal center, germinal center, memory, plasmablasts, and plasma cells from tonsil and spleen. All receptors were expressed on B cells, with the exception of CD244. SLAM family molecules were widely distributed during B-cell development, maturation and terminal differentiation into plasmablasts and plasma cells, but their expression among various B-cell subsets differed significantly. Such heterogeneous expression patterns suggest that SLAM molecules play an essential and non-redundant role in the control of humoral immune responses.


Assuntos
Antígenos CD/imunologia , Subpopulações de Linfócitos B/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Plasmócitos/imunologia , Células Precursoras de Linfócitos B/imunologia , Receptores de Superfície Celular/imunologia , Receptores Imunológicos/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Células HL-60 , Humanos , Células Jurkat , Células K562 , Família de Moléculas de Sinalização da Ativação Linfocitária , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA