Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Allergy ; 79(2): 432-444, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37804001

RESUMO

BACKGROUND: Environmental exposure to peanut through non-oral routes is a risk factor for peanut allergy. Early-life exposure to air pollutants, including particulate matter (PM), is associated with sensitization to foods through unknown mechanisms. We investigated whether PM promotes sensitization to environmental peanut and the development of peanut allergy in a mouse model. METHODS: C57BL/6J mice were co-exposed to peanut and either urban particulate matter (UPM) or diesel exhaust particles (DEP) via the airways and assessed for peanut sensitization and development of anaphylaxis following peanut challenge. Peanut-specific CD4+ T helper (Th) cell responses were characterized by flow cytometry and Th cytokine production. Mice lacking select innate immune signaling genes were used to study mechanisms of PM-induced peanut allergy. RESULTS: Airway co-exposure to peanut and either UPM- or DEP-induced systemic sensitization to peanut and anaphylaxis following peanut challenge. Exposure to UPM or DEP triggered activation and migration of lung dendritic cells to draining lymph nodes and induction of peanut-specific CD4+ Th cells. UPM- and DEP-induced distinct Th responses, but both stimulated expansion of T follicular helper (Tfh) cells essential for peanut allergy development. MyD88 signaling was critical for UPM- and DEP-induced peanut allergy, whereas TLR4 signaling was dispensable. DEP-induced peanut allergy and Tfh-cell differentiation depended on IL-1 but not IL-33 signaling, whereas neither cytokine alone was necessary for UPM-mediated sensitization. CONCLUSION: Environmental co-exposure to peanut and PM induces peanut-specific Tfh cells and peanut allergy in mice.


Assuntos
Anafilaxia , Hipersensibilidade a Amendoim , Camundongos , Animais , Camundongos Endogâmicos C57BL , Poeira , Citocinas/metabolismo , Material Particulado/efeitos adversos
2.
Front Allergy ; 4: 1219268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528863

RESUMO

Background: Early dietary introduction of peanut has shown efficacy in clinical trials and driven pediatric recommendations for early introduction of peanut to children with heightened allergy risk worldwide. Unfortunately, tolerance is not induced in every case, and a subset of patients are allergic prior to introduction. Here we assess peanut allergic sensitization and oral tolerance in genetically diverse mouse strains. Objective: We aimed to determine whether environmental adjuvant-driven airway sensitization and oral tolerance to peanut could be induced in various genetically diverse mouse strains. Methods: C57BL/6J and 12 Collaborative Cross (CC) mouse strains were fed regular chow or ad libitum peanut butter to induce tolerance. Tolerance was tested by attempting to sensitize mice via intratracheal exposure to peanut and lipopolysaccharide (LPS), followed by intraperitoneal peanut challenge. Peanut-specific immunoglobulins and peanut-induced anaphylaxis were assessed. Results: Without oral peanut feeding, most CC strains (11/12) and C57BL/6J induced peanut-specific IgE and IgG1 following airway exposure to peanut and LPS. With oral peanut feeding none of the CC strains nor C57BL/6J mice became sensitized to peanut or experienced anaphylaxis following peanut challenge. Conclusion: Allergic sensitization and oral tolerance to peanut can be achieved across a range of genetically diverse mice. Notably, the same strains that became allergic via airway sensitization were tolerized by feeding high doses of peanut butter before sensitization, suggesting that the order and route of peanut exposure are critical for determining the allergic fate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA