Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1344962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559352

RESUMO

Infections caused by Pseudomonas aeruginosa are becoming increasingly difficult to treat due to the emergence of strains that have acquired multidrug resistance. Therefore, phage therapy has gained attention as an alternative to the treatment of pseudomonal infections. Phages are not only bactericidal but occasionally show activity against biofilm as well. In this study, we describe the Pseudomonas phage Motto, a T1-like phage that can clear P. aeruginosa infections in an animal model and also exhibits biofilm-degrading properties. The phage has a substantial anti-biofilm activity against strong biofilm-producing isolates (n = 10), with at least a twofold reduction within 24 h. To demonstrate the safety of using phage Motto, cytotoxicity studies were conducted with human cell lines (HEK 293 and RAW 264.7 macrophages). Using a previously established in vivo model, we demonstrated the efficacy of Motto in Caenorhabditis elegans, with a 90% survival rate when treated with the phage at a multiplicity of infection of 10.

2.
Toxicol Int ; 22(1): 114-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26862271

RESUMO

OBJECTIVE: The main objective of this preliminary study is to confirm the synergistic anticarcinogenic potential of Vitex trifolia and Triticum aestivum ethanolic extracts. MATERIALS AND METHODS: Rat hepatic microsomal degranulation is a short - term technique that has been used for the detection of potential chemical carcinogens, in vitro. The present study has been carried out to study the inhibition of ribosome- membrane disruption against 3, 8-Diamino-5-ethyl-6-pheylphenanthridinium bromide (EB), as the degranulating agent, by measuring the RNA/protein ratios of microsomal membranes in the presence or absence of V.trifolia and T. aestivum extracts. These two extracts were further evaluated for cytotoxic effect in HCT 116 and A549 cell lines. RESULTS: V. trifolia and T. aestivum protects hepatic microsomes against the degranulatory attack by the carcinogen EB showed a significant reduction in the proliferation of the HCT 116 and A549 cancer cell lines. CONCLUSION: The ethanolic extracts of the plants, V. trifolia and T. aestivum individually possessed anti-degranulatory potential. Importantly they act synergistically, possess appreciable anticarcinogenic properties, based on their ability to inhibit EB induced liver microsomal degranulation. Further these extracts inhibit cell proliferation of cancer cell lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA