Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Basic Microbiol ; 64(2): e2300505, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988658

RESUMO

The current investigation focuses on synthesizing copper oxide (CuO)-titanium oxide (TiO2 )-chitosan-farnesol nanocomposites with potential antibacterial, antifungal, and anticancer properties against Melanoma cells (melanoma cells [SK-MEL-3]). The nanocomposites were synthesized using the standard acetic acid method and subsequently characterized using an X-ray diffractometer, scanning electron microscope, transmission electron microscopy, and Fourier transform infrared spectroscopy. The results from the antibacterial tests against Streptococcus pneumoniae and Stapylococcus aureus demonstrated significant antibacterial efficacy. Additionally, the antifungal studies using Candida albicans through the agar diffusion method displayed a considerable antifungal effect. For evaluating the anticancer activity, various assays such as MTT assay, acridine orange/ethidium bromide dual staining assay, reactive oxygen species (ROS) generation assay, and mitochondrial membrane potential (MMP) analysis were conducted on SK-MEL-3 cells. The nanocomposites exhibited the ability to induce ROS generation, decrease MMP levels, and trigger apoptosis in SK-MEL-3 cells. Collectively, the findings demonstrated a distinct pattern for the synthesized bimetallic nanocomposites. Furthermore, these nanocomposites also displayed significant (p < 0.05) antibacterial, antifungal, and anticancer effects when tested on the SK-MEL-3 cell line.


Assuntos
Anti-Infecciosos , Quitosana , Melanoma , Nanocompostos , Humanos , Quitosana/farmacologia , Quitosana/química , Farneseno Álcool , Antifúngicos/farmacologia , Espécies Reativas de Oxigênio , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Nanocompostos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana , Cobre/farmacologia , Cobre/química
2.
J Basic Microbiol ; 64(2): e2300494, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988661

RESUMO

Globally, cancer is the leading cause of death and morbidity, and skin cancer is the most common cancer diagnosis. Skin problems can be treated with nanoparticles (NPs), particularly with zinc oxide (ZnO) NPs, which have antioxidant, antibacterial, anti-inflammatory, and anticancer properties. An antibacterial activity of zinc oxide nanoparticles prepared in the presence of 4-nitrobenzaldehyde (4NB) was also tested in the present study. In addition, the influence of synthesized NPs on cell apoptosis, cell viability, mitochondrial membrane potential (MMP), endogenous reactive oxygen species (ROS) production, apoptosis, and cell adhesion was also examined. The synthesized 4-nitro benzaldehyde with ZnO (4NBZnO) NPs were confirmed via characterization techniques. 4NBZnO NPs showed superior antibacterial properties against the pathogens tested in antibacterial investigations. As a result of dose-based treatment with 4NBZnO NPs, cell viability, and MMP activity of melanoma cells (SK-MEL-3) cells were suppressed. A dose-dependent accumulation of ROS was observed in cells exposed to 4NBZnO NPs. As a result of exposure to 4NBZnO NPs in a dose-dependent manner, viable cells declined and apoptotic cells increased. This indicates that apoptotic cell death was higher. The cell adhesion test revealed that 4NBZnO NPs reduced cell adhesion and may promote apoptosis of cancer cells because of enhanced ROS levels.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Benzaldeídos/farmacologia , Antibacterianos/farmacologia
3.
Int J Biol Macromol ; 250: 126193, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562468

RESUMO

Recent efforts on the expansion of sustainable and commercial primal matters are essential to enhance the knowledge of their hazards and noxiousness to humans and their environments. For example, polysaccharide materials are widely utilized in food, wound dressing, tissue engineering, industry, targeted drug delivery, environmental, and bioremediation due to their attractive degradability, nontoxicity and biocompatibility. There are numerous easy, quick, and efficient ways to manufacture these materials that include cellulose, starch, chitosan, chitin, dextran, pectin, gums, and pullulan. Further, they exhibit distinctive properties when combined favourably with raw materials from other sources. This review discusses the synthesis and novel applications of these carbohydrate polymers in industrial, environmental and biomedical sciences.

4.
Nepal J Epidemiol ; 13(4): 1294-1297, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38299042

RESUMO

Nanoparticles (NPs) are small particles with a surface area ranging from 1 to 100 nm in diameter that are rampantly used in different fields, e.g., medicine, engineering, and others. Because of their unique properties, such as their tiny size, magnetic properties, quantum size effects, and macroscopic quantum tunnelling effects, they are crucial for a wide range of potential applications. NPs play a significant role in the treatment of vascular disorders, the production of vaccines, and the development of drug carriers for diverse therapies due to their bioavailability, targeting ability, and efficacy. However, significant risks to the environment and health are also associated with it. NPs cause necrotic plasma membrane rupture or apoptosis, which leads to cell death. NPs interfere with cell signalling, endosomal membranes, and organelles like the nucleus or mitochondria, affecting their function. NPs cause autophagic cell death, which causes a stress response and sterile inflammation. The primary routes for the entry of NPs into the human body are inhalation, ingestion, and skin contact. NPs accumulate in the respiratory system based on their size, shape, and surface properties. NPs can cause lung inflammation and fibrosis, disrupt the endocrine system by attaching to hormone receptors, and produce reactive oxygen species (ROS) associated with DNA damage, oligospermia, and male infertility. Carcinogenic properties of NPs cause mutations, apoptosis, and inflammatory responses. Collaborative research between ecologists and epidemiologists may enlighten ways to reduce the harmful effects of NPs.

5.
Curr Pharmacol Rep ; 8(6): 409-417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105411

RESUMO

Purpose of Review: This article provides the explanatory manuscript regarding the SARS-Corona virus 2. Sub-titled as the history of single-stranded RNA, internal characters of COVID-19, resource, the life cycle of COVID-19, reservoir of the disease, secondary infections of COVID-19 and nano herbal remedy. Recent Findings: The skin is not the main target of the SARS-corona virus 2 infections but somehow directly or indirectly, it causes exacerbating eruptions on the skin. Recent research shows that curcumin-mediated synthesized AgNPs show its potential character in the entry of respiratory syncytial virus (RSV), blocks interaction with the viral surface, and damages the viral protein. In modern days, molecular docking studies fabricated copper iodide flower extract (CuI-FE) which shows tough inhibitory action against COVID-19. Many articles show green synthesis-mediated nanoparticles like silver, gold, zinc, copper, iron, titanium dioxide, selenium, and cadmium which possess high anti-viricidal activity. Summary: The anti-oxidant, anti-viral, anti-inflammatory, anti-hive rich plant-mediated nanoparticle synthesis might be an alternative betterment, cost-effective, and eco-friendly medication for the skin disease caused by SARS-corona virus 2 (the viral clinical signs are itchy, hives, rashes, papules, psoriasis, and inflammation) and (non-viral clinical signs-pressure urticaria, contact dermatitis, and acne) that occurred as the result of COVID-19.

6.
Nanomaterials (Basel) ; 12(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014624

RESUMO

The aqueous extract of Alternanthera sessilis (As) acts as the precursors for the quick reduction of silver ions, which leads to the formation of silver nanoparticles. In the agar, well diffusion method of the Klebsiella pneumoniae shows the minimal inhibitory concentration of 12 mm against A. sessilis mediated silver nanoparticles (As-AgNPs) at 60 µg/mL concentration. Fabric treated with novel AS-AgNPs is tested against the K. pneumoniae and shows an inhibitory action of 12 mm with mixed cotton that determines the antimicrobial efficacy of the fabrics. Uv- visible spectrophotometer was performed, showing a surface plasmon resonance peak at 450 nm cm-1. FTIR shows the vibration and the infrared radiation at a specific wavelength of 500-4000 cm-1. The HR-TEM analysis showed the presence of black-white crystalline, spherical-shaped As-AgNPs embedded on the fabrics range of 15 nm-40 nm. In the scanning electron microscope, the presence of small ball-shaped As-AgNPs embedded on the fabrics at a voltage of 30 KV was found with a magnification of 578X. EDAX was performed in which the nanoparticles show a peak of 2.6-3.9 KeV, and it also reveals the presence of the composition, distribution, and elemental mapping of the nanoparticles. The cytotoxic activity of synthesized nanosilver was carried out against L929 cell lines, which show cell viability at a concentration of 2.5 µg mL-1. Cell proliferation assay shows no cytotoxicity against L929 cell lines for 24 h. In this study, the green synthesis of silver nanoparticles from A. sessilis appears to be a cheap, eco-friendly, and alternative approach for curing infectious ulcers on the floor of the stratum corneum. Nanotechnology conjoined with herbal therapeutics provides a promising solution for wound management.

7.
Appl Biochem Biotechnol ; 194(1): 434-444, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34611855

RESUMO

Phyllanthus emblica is a traditional medicinal plant that is endowed with curative properties including anti-bacterial, anti-fungal, anti-viral, and analgesic properties. Bacteria make use of cell-cell signaling system known as quorum sensing (QS) and respond to their own population. In most gram-negative bacteria, the transcriptional regulators belonging to the Lux R protein play a crucial role in the QS mechanism by detecting the presence of signaling molecules known as N-acyl homoserine lactones (AHLs). In this present work, the anti-quorum sensing activity of Phyllanthus emblica was evaluated against Pseudomonas aeruginosa. Anti-quorum sensing efficacy of Phyllanthus emblica was estimated with reference to QS bio-monitoring strain Chromobacterium violaceum. The binding efficacy of the phytochemicals of Phyllanthus emblica against CviR protein from Chromobacterium violaceum and LasR protein from Phyllanthus emblica were studied.


Assuntos
Acil-Butirolactonas , Antibacterianos , Proteínas de Bactérias , Simulação de Acoplamento Molecular , Phyllanthus emblica/química , Compostos Fitoquímicos , Pseudomonas aeruginosa , Percepção de Quorum/efeitos dos fármacos , Transativadores , Acil-Butirolactonas/química , Acil-Butirolactonas/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Transativadores/química , Transativadores/metabolismo
8.
Antibiotics (Basel) ; 10(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34827271

RESUMO

In this article, the supernatant of the soil-borne pathogen Bacillus mn14 was used as the catalyst for the synthesis of AgNPs. The antibacterial and antifungal activity of Bs-AgNPs was evaluated, in which S. viridans and R. solani showed susceptibility at 70 µL and 100 µL concentrations. Enzyme properties of the isolates, according to minimal inhibitory action and a growth-enhancing hormone-indole acetic acid (IAA) study of the isolates, were expressed in TLC as a purple color with an Rf value of 0.7. UV/Vis spectroscopy revealed the presence of small-sized AgNPs, with a surface plasmon resonance (SPR) peak at 450 nm. The particle size analyzer identified the average diameter of the particles as 40.2 nm. The X-ray diffraction study confirmed the crystalline nature and face-centered cubic type of the silver nanoparticle. Scanning electron microscopy characterized the globular, small, round shape of the silver nanoparticle. AFM revealed the two-dimensional topology of the silver nanoparticle with a characteristic size ranging around 50 nm. Confocal microscopy showed the cell-wall disruption of S. viridans treated with Bs-AgNPs. High-content screening and compound microscopy revealed the destruction of mycelia of R. solani after exposure to Bs-AgNPs. Furthermore, the Bs-AgNPs cured sheath blight disease by reducing lesion length and enhancing root and shoot length in Oryza sativa seeds. This soil-borne pathogen Bacillus-mediated synthesis approach of AgNPs appears to be cost-efficient, ecofriendly, and farmer-friendly, representing an easy way of providing valuable nutritious edibles in the future.

9.
J Biochem Mol Toxicol ; 35(4): e22700, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33421271

RESUMO

Nasopharyngeal cancer is a malignancy developing from the nasopharynx epithelium due to smoking and nitrosamine-containing foods. Nasopharyngeal cancer is highly endemic to Southeast Asia. Eugenol and piperine have shown many anticancer activities on numerous cancer types, like colon, lung, liver, and breast cancer. In this study, we amalgamated eugenol and piperine loaded with a polyhydroxy butyrate/polyethylene glycol nanocomposite (Eu-Pi/PHB-PEG-NC) for better anticancer results against nasopharyngeal cancer (C666-1) cells. In the current study, nasopharyngeal cancer cell lines C666-1 were utilized to appraise the cytotoxic potential of Eug-Pip-PEG-NC on cell propagation, programmed cell death, and relocation. Eu-Pi/PHB-PEG-NC inhibits cellular proliferation on C666-1 cells in a dose-dependent manner, and when compared with 20 µg/ml, 15 µg/ml of loaded mixture evidently restrained the passage aptitude of C666-1 cells, this was attended with a downregulated expression of mitochondrial membrane potential. Treatment with 15 µg/ml Eu-Pi/PHB-PEG-NC suggestively amplified cell apoptosis in the C666-1 cells. Furthermore, its cleaved caspase-3, 8, and 9 and Bax gene expression was augmented and Bcl-2 gene expression was diminished after Eu-Pi/PHB-PEG-NC treatment. Additionally, our data established that the collective effect of Eu-Pi/PHB-PEG-NC loaded micelles inhibited the expansion of C666-1 cells augmented apoptosis connected with the intrusion of PI3K/Akt/mTOR signaling pathway.


Assuntos
Alcaloides , Apoptose/efeitos dos fármacos , Benzodioxóis , Portadores de Fármacos , Eugenol , Nanocompostos , Neoplasias Nasofaríngeas , Piperidinas , Alcamidas Poli-Insaturadas , Transdução de Sinais/efeitos dos fármacos , Alcaloides/química , Alcaloides/farmacologia , Benzodioxóis/química , Benzodioxóis/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Elafina/metabolismo , Eugenol/química , Eugenol/farmacologia , Humanos , Nanocompostos/química , Nanocompostos/uso terapêutico , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Piperidinas/química , Piperidinas/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/farmacologia , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Proibitinas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
10.
Bioinformation ; 17(7): 667-672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35283584

RESUMO

The bioactives of Boswellia serrata have a role in ulcer healing therapies. Eleven bioactive compounds were obtained by GC-MS among which Cholan-24-oic acid, 3,12-bis (acetyl oxy) has a high molecular weight of 490.6719 with a retention time of 26.729. Twenty wound samples were collected aseptically from the labs and hospitals in and around the Namakkal districts of Tamilnadu, India. The antibacterial potential of E.coli showed a maximum inhibition of 27 mm against Tetracycline at 30µg. The ethanolic extract of the B. serrata shows a susceptibility of 19mm towards E. coli at 60µg concentration in MIC. Molecular docking results show the binding energy of Cholan-24-oic acid, 3,12-bis(acetyloxy) -8.6 (kcal/mol) followed by Pyrene, hexadecahydro- -6.7 (kcal/mol), and 5(1H)- Azulenone, 2,4,6,7,8,8a-hexahydro-3,8-dimethyl-4-(1-methylethylidene)-, (8S-cis)- 6.4 (kcal/mol) for further consideration.

11.
J Photochem Photobiol B ; 201: 111643, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31698218

RESUMO

Diabetes is a major emerging health consequence across the world which directly associated with the obesity. Contemporary anti-diabetic drugs have numeral limitations, and investigation of herbal remedies for diabetes give novel guide for the expansion of new drugs that can be used as harmonizing to present anti-diabetic allopathic medications. Gold nanoparticles (AuNPs) of 21 nm have been formerly well portrayed in vitro for their capability to intend active uptake in cell. Our present study was dealing with the synthesis of gold nanoparticles by means of Smilax glabra rhizome amend the anti-obesity constraints in high-fat diet by streptozotocin provoked obese diabetes in rat model. Characterization studies like UV -Spectroscopy, XRD analysis, SEM, TEM microscopy, Energy Dispersive X-Ray Spectroscopy, and FT-IR investigation confirms the availability of dimension, shape and size. Biochemical parameters like blood glucose and insulin sufferance and its release, lipid profile, aterogenic & coronary index, liver markers, inflammatory markers, hormones like leptin, resistin, adiponectin indicates the therapeutic effect of gold nanoparticles harvested from Smilax glabra on obese and diabetic rats. Histopathological examinations displayed the disturbed internal structures of obese and diabetic rats liver and heart tissues. Whereas, treatment with gold nanoparticles synthesized from Smilax glabra restored the internal membrane, nuclei and cytoplasm. All these findings confirmed the anti-obesity and anti-diabetic effect of synthesized gold nanoparticles from Smilax glabra.


Assuntos
Diabetes Mellitus Experimental/patologia , Dieta Hiperlipídica , Ouro/química , Nanopartículas Metálicas/química , Smilax/química , Animais , Glicemia/análise , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Coração/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/toxicidade , Miocárdio/metabolismo , Miocárdio/patologia , Extratos Vegetais/química , Ratos , Ratos Wistar , Rizoma/química , Rizoma/metabolismo , Smilax/metabolismo , Estreptozocina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA