Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Osteoarthritis Cartilage ; 30(9): 1174-1185, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597373

RESUMO

OBJECTIVES: The aim of this systematic review was to assess the effects of stem cell-based therapies on the treatment of Temporomandibular Joint Osteoarthritis (TMJ-OA) and the regeneration of cartilage/osteochondral defects. METHODS: Data on preclinical studies evaluating the effectiveness of stem cell-based therapies for treating Temporomandibular Disorders (TMDs) were extracted from PubMed, Web of Science, and Cochrane Library and the grey literature by three independent reviewers. A manual search was performed in the databases, the reference list of review studies, and relevant journals in the field. Compliance with the ARRIVE guidelines was evaluated for quality assessment. SYRCLE's risk of bias tool for animal experimental studies was assessed to define internal validity. RESULTS: After applying the inclusion and exclusion criteria, 10 studies were included in the qualitative synthesis. Regardless of cell origin, stem cell-based therapeutic approaches induced protective, anti-inflammatory, and chondroregenerative potential in the treatment of TMJ-OA. Regeneration of the cartilage layer on the surface of the condyle was achieved when stem cells were directly flushed into the defect or when delivered within a carrier. CONCLUSION: Stem cell-based therapies may be considered a promising approach for the treatment of TMJ-OA and for the regeneration of full-thickness cartilage and osteochondral defects in the TMJ. Human studies shall be performed to validate these results found in animals.


Assuntos
Cartilagem Articular , Transplante de Células-Tronco Mesenquimais , Osteoartrite , Animais , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Osteoartrite/metabolismo , Osteoartrite/terapia , Regeneração , Articulação Temporomandibular/metabolismo
2.
J Dent Res ; 100(10): 1118-1126, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34315311

RESUMO

The development of biomaterials based on the combination of biopolymers with bioactive compounds to develop delivery systems capable of modulating dentin regeneration mediated by resident cells is the goal of current biology-based strategies for regenerative dentistry. In this article, the bioactive potential of a simvastatin (SV)-releasing chitosan-calcium-hydroxide (CH-Ca) scaffold was assessed. After the incorporation of SV into CH-Ca, characterization of the scaffold was performed. Dental pulp cells (DPCs) were seeded onto scaffolds for the assessment of cytocompatibility, and odontoblastic differentiation was evaluated in a microenvironment surrounded by dentin. Thereafter, the cell-free scaffold was adapted to dentin discs positioned in artificial pulp chambers in direct contact with a 3-dimensional (3D) culture of DPCs, and the system was sealed to simulate internal pressure at 20 cm/H2O. In vivo experiments with cell-free scaffolds were performed in rats' calvaria defects. Fourier-transform infrared spectroscopy spectra proved incorporation of Ca and SV into the scaffold structure. Ca and SV were released upon immersion in a neutral environment. Viable DPCs were able to spread and proliferate on the scaffold over 14 d. Odontoblastic differentiation occurred in the DPC/scaffold constructs in contact with dentin, in which SV supplementation promoted odontoblastic marker overexpression and enhanced mineralized matrix deposition. The chemoattractant potential of the CH-Ca scaffold was improved by SV, with numerous viable and dentin sialoprotein-positive cells from the 3D culture being observed on its surface. Cells at 3D culture featured increased gene expression of odontoblastic markers in contact with the SV-enriched CH-Ca scaffold. CH-Ca-SV led to intense mineralization in vivo, presenting mineralization foci inside its structure. In conclusion, the CH-Ca-SV scaffold induces differentiation of DPCs into a highly mineralizing phenotype in the presence of dentin, creating a microenvironment capable of attracting pulp cells to its surface and inducing the overexpression of odontoblastic markers in a cell-homing strategy.


Assuntos
Quitosana , Animais , Cálcio , Diferenciação Celular , Polpa Dentária , Dentina , Odontoblastos , Ratos , Sinvastatina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA