Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35163633

RESUMO

Glioblastoma multiforme is the most lethal intrinsic brain tumor. Even with the existing treatment regimen of surgery, radiation, and chemotherapy, the median survival time is only 15-23 months. The invasive nature of this tumor makes its complete removal very difficult, leading to a high recurrence rate of over 90%. Drug delivery to glioblastoma is challenging because of the molecular and cellular heterogeneity of the tumor, its infiltrative nature, and the blood-brain barrier. Understanding the critical characteristics that restrict drug delivery to the tumor is necessary to develop platforms for the enhanced delivery of effective treatments. In this review, we address the impact of tumor invasion, the molecular and cellular heterogeneity of the tumor, and the blood-brain barrier on the delivery and distribution of drugs using potential therapeutic delivery options such as convection-enhanced delivery, controlled release systems, nanomaterial systems, peptide-based systems, and focused ultrasound.


Assuntos
Antineoplásicos , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Barreira Hematoencefálica , Humanos
2.
Nanomedicine (Lond) ; 16(21): 1857-1872, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34282923

RESUMO

The aim of this study was to investigate the distribution, tolerance, and anticancer and antiviral activity of Zn-based physiometacomposites (PMCs). Manganese, iron, nickel and cobalt-doped ZnO, ZnS or ZnSe were synthesized. Cell uptake, distribution into 3D culture and mice, and biochemical and chemotherapeutic activity were studied by fluorescence/bioluminescence, confocal microscopy, flow cytometry, viability, antitumor and virus titer assays. Luminescence and inductively coupled plasma mass spectrometry analysis showed that nanoparticle distribution was liver >spleen >kidney >lung >brain, without tissue or blood pathology. Photophysical characterization as ex vivo tissue probes and LL37 peptide, antisense oligomer or aptamer delivery targeting RAS/Ras binding domain (RBD) was investigated. Treatment at 25 µg/ml for 48 h showed ≥98-99% cell viability, 3D organoid uptake, 3-log inhibition of ß-Galactosidase and porcine reproductive respiratory virus infection. Data support the preclinical development of PMCs for imaging and delivery targeting cancer and infectious disease.


Assuntos
Antivirais , Nanopartículas , Animais , Antivirais/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Luminescência , Camundongos , Suínos , Zinco/farmacologia
3.
Front Microbiol ; 9: 1519, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042752

RESUMO

Consumption of raw mangoes has led to multiple Salmonella-associated foodborne outbreaks in the United States. Although several studies have investigated the epiphytic fitness of Salmonella on fresh produce, there is sparse information available on the survival of Salmonella on mangoes under commercial handling and storage conditions. Hence, the objective of the study was to evaluate the survival of Salmonella on mangoes under ambient conditions simulating the mango packing house and importer facility. Further, the ability of the pathogen to adhere and attach on to the mango fructoplane was also investigated. For the attachment assays, mango skin sections were inoculated with fifty microliters of S. Newport suspension (6.5 log CFU/skin section) and minimum time required for adhesion and attachment were recorded. With the survival assays, unwaxed mangoes were spot inoculated with the Salmonella cocktail to establish approximately 4 and 6.5 log CFU/mango. The fruits were then subjected to different storage regimens simulating fruit unloading, waxing, and storage at the packing house and ripening and storage at the importer facility. Results of our study reveal that Salmonella was able to adhere on to the fructoplane immediately after contact. Further, formation of attachment structures was seen as early as 2 min following inoculation. With the survival assays, irrespective of the inoculum levels, no significant increase or decrease in pathogen population was observed when fruit were stored either at ambient (29-32°C and RH 85-95%, for 48 h), ripening (20-22°C and RH 90-95% for 9 days) or refrigerated storage (10-15°C and 85-95% for 24-48 h) conditions. Therefore, once contaminated, mangoes could serve as potential vehicles in the transmission of Salmonella along the post-harvest environment. Hence development and adoption of effective food safety measures are warranted to promote the microbiological safety of mangoes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA