Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 310(7): E484-94, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26814015

RESUMO

The hepatic tricarboxylic acid (TCA) cycle is central to integrating macronutrient metabolism and is closely coupled to cellular respiration, free radical generation, and inflammation. Oxidative flux through the TCA cycle is induced during hepatic insulin resistance, in mice and humans with simple steatosis, reflecting early compensatory remodeling of mitochondrial energetics. We hypothesized that progressive severity of hepatic insulin resistance and the onset of nonalcoholic steatohepatitis (NASH) would impair oxidative flux through the hepatic TCA cycle. Mice (C57/BL6) were fed a high-trans-fat high-fructose diet (TFD) for 8 wk to induce simple steatosis and NASH by 24 wk. In vivo fasting hepatic mitochondrial fluxes were determined by(13)C-nuclear magnetic resonance (NMR)-based isotopomer analysis. Hepatic metabolic intermediates were quantified using mass spectrometry-based targeted metabolomics. Hepatic triglyceride accumulation and insulin resistance preceded alterations in mitochondrial metabolism, since TCA cycle fluxes remained normal during simple steatosis. However, mice with NASH had a twofold induction (P< 0.05) of mitochondrial fluxes (µmol/min) through the TCA cycle (2.6 ± 0.5 vs. 5.4 ± 0.6), anaplerosis (9.1 ± 1.2 vs. 16.9 ± 2.2), and pyruvate cycling (4.9 ± 1.0 vs. 11.1 ± 1.9) compared with their age-matched controls. Induction of the TCA cycle activity during NASH was concurrent with blunted ketogenesis and accumulation of hepatic diacylglycerols (DAGs), ceramides (Cer), and long-chain acylcarnitines, suggesting inefficient oxidation and disposal of excess free fatty acids (FFA). Sustained induction of mitochondrial TCA cycle failed to prevent accretion of "lipotoxic" metabolites in the liver and could hasten inflammation and the metabolic transition to NASH.


Assuntos
Ciclo do Ácido Cítrico/fisiologia , Ácidos Graxos não Esterificados/metabolismo , Resistência à Insulina , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Mensageiro/metabolismo , Animais , Isótopos de Carbono , Carnitina/análogos & derivados , Carnitina/metabolismo , Ceramidas/metabolismo , Cromatografia Líquida , Gorduras na Dieta , Sacarose Alimentar , Diglicerídeos/metabolismo , Modelos Animais de Doenças , Frutose , Técnica Clamp de Glucose , Inflamação , Fígado/patologia , Espectroscopia de Ressonância Magnética , Metaboloma , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Oxirredução , Reação em Cadeia da Polimerase em Tempo Real , Índice de Gravidade de Doença , Espectrometria de Massas em Tandem , Ácidos Graxos trans , Transcriptoma
2.
JIMD Rep ; 26: 85-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26303612

RESUMO

BACKGROUND: Glycogen storage disease type I (GSD I) causes severe hypoglycemia during periods of fasting since both glycogenolysis and gluconeogenesis are impaired. Primary treatment in North America consists of cornstarch therapy every 3-4 h. Waxy maize extended release cornstarch was introduced for maintaining overnight glucose concentrations, but no studies have assessed long-term safety and efficacy of the product. OBJECTIVE: To demonstrate the safety and efficacy of modified cornstarch in GSD I. DESIGN: An open-label overnight trial of extended release cornstarch was performed. Subjects with a successful trial (optimal metabolic control 2 or more hours longer than with traditional cornstarch) were given the option of continuing into the chronic observational phase. Subjects were assessed biochemically at baseline and after 12 months. RESULTS: Of the 106 subjects (93 GSD Ia/13 GSD Ib), efficacy was demonstrated in 82 patients (88%) with GSD Ia and 10 patients (77%) with GSD Ib. The success rate for extending fasting was 95% for females and 78% for males. Of the patients who entered the longitudinal phase, long-term data are available for 44 subjects. Mean duration of fasting on traditional cornstarch prior to study for the cohort was 4.1 and 7.8 h on the extended release cornstarch (P < 0.001). All laboratory markers of metabolic control have remained stable in the chronically treated patients. CONCLUSION: Extended release cornstarch appears to improve the quality of life of patients with GSD I without sacrificing metabolic control. Avoiding the overnight dose of cornstarch should enhance safety in this population.

3.
Am J Physiol Endocrinol Metab ; 309(4): E311-9, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26058864

RESUMO

Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperinsulinemic clamps (insulin stimulation) were measured in 94 human subjects with varying degrees of insulin sensitivity to identify their relationships with insulin resistance. Furthermore, the impact of elevated BCAA on hepatic TCA cycle was determined in a diet-induced mouse model of NAFLD, utilizing targeted metabolomics and nuclear magnetic resonance (NMR)-based metabolic flux analysis. Insulin stimulation revealed robust relationships between human plasma BCAA and indices of insulin resistance, indicating chronic metabolic overload from BCAA. Human plasma BCAA and long-chain acylcarnitines also showed a positive correlation, suggesting modulation of mitochondrial metabolism by BCAA. Concurrently, mice with NAFLD failed to optimally induce hepatic mTORC1, plasma ketones, and hepatic long-chain acylcarnitines, following acute elevation of plasma BCAA. Furthermore, elevated BCAA failed to induce multiple fluxes through hepatic TCA cycle in mice with NAFLD. Our data suggest that BCAA are essential to mediate efficient channeling of carbon substrates for oxidation through mitochondrial TCA cycle. Impairment of BCAA-mediated upregulation of the TCA cycle could be a significant contributor to mitochondrial dysfunction in NAFLD.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Aminoácidos de Cadeia Ramificada/farmacologia , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Feminino , Técnica Clamp de Glucose , Humanos , Insulina/farmacologia , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Receptor Cross-Talk
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA