Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dent Mater ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39174418

RESUMO

OBJECTIVE: Implant treatment is provided to individuals with normal, idealized masticatory forces and also to patients with parafunctional habits such as grinding, clenching, and bruxing. Dental erosion is a common increasing condition and is reported to affect 32 % of adults, increasing with age. This oral environment is conducive to tribocorrosion and the potential loss of materials from the implant surfaces and interfaces with prosthetic components. Although several fretting-corrosion studies have been reported, until now, no study has simulated clinically relevant micromotion. Therefore, our aim is to investigate fretting-corrosion using our new micro-fretting corrosion system, simulating clinical conditions with 5 µm motion at the implant-abutment interface under various occlusal loads and acidic exposures. METHODS: We simulated four conditions in an oral environment by varying the contact load (83 N and 233 N) and pH levels (3 and 6.5). The commonly used dental implant material, Grade IV titanium, and abutment material Zirconia (ZrO2)/ Grade IV titanium were selected as testing couple materials. Artificial saliva was employed to represent an oral environment. In addition, a standard tribocorrosion protocol was followed, and the pin was controlled to oscillate on the disk with an amplitude of 5 µm during the mastication stage. After the testing, 3D profilometry and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) were utilized to analyze the worn surfaces. Inductively coupled plasma mass spectrometry (ICP-MS) was also used to measure the metal ion release. RESULTS: Energy ratios were below 0.2, indicating a fretting regime of partial slip for all groups. Open-circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) were analyzed to compare the electrochemical behavior among groups. As a result, corrosive damage was observed to be more in the Ti4- Ti4 groups than in Zr-Ti4 ones, whereas more mechanical damage was found in the Zr-Ti4 groups than in the Ti4-Ti4 groups. Possible mechanisms were proposed in the discussion to explain these findings. SIGNIFICANCE: The results observed from this study might be helpful to clinicians with implant selection. For example, for patients with bruxism, a titanium implant paired with a titanium abutment may be preferable, while patients with GERD may benefit more from a titanium implant paired with a zirconia abutment.

3.
Biomed Mater ; 19(5)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38917828

RESUMO

The increasing prevalence of bone replacements and complications associated with bone replacement procedures underscores the need for innovative tissue restoration approaches. Existing synthetic grafts cannot fully replicate bone vascularization and mechanical characteristics. This study introduces a novel strategy utilizing pectin, chitosan, and polyvinyl alcohol to create interpenetrating polymeric network (IPN) scaffolds incorporated with extracellular vesicles (EVs) isolated from human mesenchymal stem cells (hMSCs). We assess the osteointegration and osteoconduction abilities of these modelsin vitrousing hMSCs and MG-63 osteosarcoma cells. Additionally, we confirm exosome properties through Transmission Electron Microscopy (TEM), immunoblotting, and Dynamic Light Scattering (DLS).In vivo, chick allantoic membrane assay investigates vascularization characteristics. The study did not includein vivoanimal experiments. Our results demonstrate that the IPN scaffold is highly porous and interconnected, potentially suitable for bone implants. EVs, approximately 100 nm in size, enhance cell survival, proliferation, alkaline phosphatase activity, and the expression of osteogenic genes. EVs-mediated IPN scaffolds demonstrate promise as precise drug carriers, enabling customized treatments for bone-related conditions and regeneration efforts. Therefore, the EVs-mediated IPN scaffolds demonstrate promise as precise carriers for the transport of drugs, allowing for customized treatments for conditions connected to bone and efforts in regeneration.


Assuntos
Regeneração Óssea , Proliferação de Células , Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteogênese , Alicerces Teciduais , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Alicerces Teciduais/química , Células-Tronco Mesenquimais/citologia , Animais , Linhagem Celular Tumoral , Transdução de Sinais , Sobrevivência Celular , Engenharia Tecidual/métodos , Quitosana/química , Fosfatase Alcalina/metabolismo , Osseointegração , Polímeros/química , Porosidade
4.
Med Biol Eng Comput ; 62(8): 2409-2434, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38609577

RESUMO

ASTRACT: One of the most common oral diseases affecting millions of people worldwide is periodontitis. Usually, proteins in body fluids are used as biomarkers of diseases. This study focused on hydrogen peroxide, lipopolysaccharide (LPS), and lactic acid as salivary non-protein biomarkers for oxidative stress conditions of periodontitis. Electrochemical analysis of artificial saliva was done using Gamry with increasing hydrogen peroxide, bLPS, and lactic acid concentrations. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were conducted. From EIS data, change in capacitance and CV plot area were calculated for each test condition. Hydrogen peroxide groups had a decrease in CV area and an increase in percentage change in capacitance, lipopolysaccharide groups had a decrease in CV area and a decrease in percentage change in capacitance, and lactic acid groups had an increase of CV area and an increase in percentage change in capacitance with increasing concentrations. These data showed a unique combination of electrochemical properties for the three biomarkers. Scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) employed to observe the change in the electrode surface and elemental composition data present on the sensor surface also showed a unique trend of elemental weight percentages. Machine learning models using hydrogen peroxide, LPS, and lactic acid electrochemical data were applied for the prediction of risk levels of periodontitis. The detection of hydrogen peroxide, LPS, and lactic acid by electrochemical biosensors indicates the potential to use these molecules as electrochemical biomarkers and use the data for ML-driven prediction tool for the periodontitis risk levels.


Assuntos
Técnicas Biossensoriais , Espectroscopia Dielétrica , Peróxido de Hidrogênio , Ácido Láctico , Lipopolissacarídeos , Estresse Oxidativo , Periodontite , Saliva , Humanos , Saliva/química , Saliva/metabolismo , Periodontite/metabolismo , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Técnicas Biossensoriais/métodos , Ácido Láctico/análise , Ácido Láctico/metabolismo , Espectroscopia Dielétrica/métodos , Biomarcadores/análise , Biomarcadores/metabolismo , Aprendizado de Máquina
5.
J Mech Behav Biomed Mater ; 152: 106449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387118

RESUMO

Metal alloy microstructure plays a crucial role in corrosion associated with total hip replacement (THR). THR is a prominent strategy that uses metal implants such as cobalt-chromium-molybdenum (CoCrMo) alloys due to their advantageous biological and mechanical properties. Despite all benefits, these implants undergo corrosion and wear processes in-vivo in a synergistic manner called tribocorrosion. Also, the implant retrieval findings reported that fretting corrosion occurred in-vivo, evidenced by the damage patterns that appeared on the THR junction interfaces. There is no scientific data on the studies reporting the fretting corrosion patterns of CoCrMo microstructures in the presence of specific biological treatments to date. In the current study, Flat-on-flat fretting corrosion set-up was customized and used to study the tribocorrosion patterns of fretting corrosion to understand the role of alloy microstructure. Alloy microstructural differences were created with the implant stock metal's longitudinal and transverse cutting orientations. As a result, the transverse created the non-banded, homogenous microstructure, whereas the longitudinal cut resulted in the banded, non-homogenous microstructure on the surface of the alloy (in this manuscript, the terms homogenous and banded were used). The induced currents were monitored using a three-electrode system. Three different types of electrolytes were utilized to study the fretting corrosion patterns with both homogeneous and banded microstructures: 1. Control media 2. Spent media (the macrophage cell cultured media) 3. Challenged media (media collected after the macrophage was treated with CoCrMo particles). From the electrochemical results, in the potentiostat conditions, the banded group exhibited a higher induced current in both challenged and spent electrolyte environments than in control due to the synergistic activity of CoCrMo particles and macrophage demonstrating more corrosion loss. Additionally, both Bode and Nyquist plots reported a clear difference between the banded and homogeneous microstructure, especially with challenged electrolytes becoming more corrosion-resistant post-fretting than pre-fretting results. The banded microstructure showed a unique shape of the fretting loop, which may be due to tribochemical reactions. Therefore, from the electrochemical, mechanical, and surface analysis data results, the transverse/homogenous/non-banded alloy microstructure groups show a higher resistance to fretting-corrosion damage.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Corrosão , Ligas , Cromo , Cobalto , Molibdênio , Eletrólitos
6.
Thin Solid Films ; 7882024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38343423

RESUMO

The present study aimed to investigate the feasibility of using acoustic emission (AE) as a detection method for identifying failure mechanisms at the modular junction interface in total hip replacements (THRs) subjected to fretting corrosion. The experimental setup involved simulating fretting corrosion using a Ti6Al4V disc representing the femoral neck and a ZrO2 pin representing the femoral head. Mechanical testing provided insights into the wear and frictional behavior occurring at the modular junction interface. The results revealed that for all three potential conditions, a fretting condition of partial slip was observed. These findings highlight the importance of understanding the mechanical interactions and their influence on the overall performance and longevity of THRs. Electrochemical analysis shed light on the corrosion behavior under different potentiostatic conditions. High potentials in the anodic condition led to increased corrosion and ion transfer due to the breakdown of the passive oxide layer. Conversely, the cathodic potential condition exhibited a regrowth of the passive oxide layer, protecting the Ti6Al4V surface from further corrosion. The mid-range corrosion potential condition showed a dynamic equilibrium between corrosion and passivation processes. These electrochemical insights enhance our understanding of the mechanisms involved in fretting corrosion. The AE data proved to be promising in detecting and monitoring the onset and progression of failure mechanisms. The AE signals exhibited distinctive patterns that correlated with the severity of fretting corrosion. Notably, the hit driven data results, derived from AE signals, demonstrated the ability to differentiate between different levels of fretting conditions. This suggests that AE can serve as a valuable diagnostic tool for early detection and continuous monitoring of implant failure in THRs.

7.
Cureus ; 16(1): e52262, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38352094

RESUMO

Warfarin therapy provides extensive antithrombotic benefits and, thus, is widely used in the general population. However, as with most medications, there are also risks associated with warfarin use. Specifically, because of the narrow therapeutic window of this drug, patients taking it are at a much higher risk of accidental bleeding. Additionally, patients may also present with bleeding complications when infected with illnesses with coughing as a symptom, such as influenza or COVID-19. These patients have the potential to suffer hemorrhagic morbidities related to the increased intra-abdominal and intra-thoracic pressures that are generated from coughing. Moreover, a synergistic effect is seen when patients find themselves in a situation where they are taking anticoagulation therapy and become infected with illnesses such as influenza or COVID-19. We present a case in which an individual on warfarin therapy was infected with Influenza A. This combination of factors eventually led to massive hemorrhage and large abdominal wall hematoma formation. This case brings to light the importance of having a low threshold for considering the prospect of massive hemorrhage in any patient who is anticoagulated and develops a condition that is associated with increased abdominal pressure. Because these bleeding events can have devastating effects, raising awareness of this risk is increasingly important. Early detection of massive hemorrhage will lead to better outcomes and can ultimately be life-saving for these patients.

8.
Bioengineering (Basel) ; 11(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38391650

RESUMO

Transforaminal lumbar interbody fusion (TLIF) is a commonly used technique for treating lumbar degenerative diseases. In this study, we developed a fully computer-supported pipeline to predict both the cage height and the degree of lumbar lordosis subtraction from the pelvic incidence (PI-LL) after TLIF surgery, utilizing preoperative X-ray images. The automated pipeline comprised two primary stages. First, the pretrained BiLuNet deep learning model was employed to extract essential features from X-ray images. Subsequently, five machine learning algorithms were trained using a five-fold cross-validation technique on a dataset of 311 patients to identify the optimal models to predict interbody cage height and postoperative PI-LL. LASSO regression and support vector regression demonstrated superior performance in predicting interbody cage height and postoperative PI-LL, respectively. For cage height prediction, the root mean square error (RMSE) was calculated as 1.01, and the model achieved the highest accuracy at a height of 12 mm, with exact prediction achieved in 54.43% (43/79) of cases. In most of the remaining cases, the prediction error of the model was within 1 mm. Additionally, the model demonstrated satisfactory performance in predicting PI-LL, with an RMSE of 5.19 and an accuracy of 0.81 for PI-LL stratification. In conclusion, our results indicate that machine learning models can reliably predict interbody cage height and postoperative PI-LL.

9.
Heliyon ; 10(1): e23626, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192807

RESUMO

Statement of problem: One of the main challenges facing dental implant success is peri-implantitis. Recent evidence indicates that titanium (Ti) corrosion products and undetected-residual cement are potential risk factors for peri-implantitis. The literature on the impact of various types of dental cement on Ti corrosion is very limited. Purpose: This study aimed to determine the influence of dental cement on Ti corrosion as a function of cement amount and type. Materials and methods: Thirty commercially pure Ti grade 4 discs (19 × 7mm) were polished to mirror-shine (Ra ≈ 40 nm). Samples were divided into 10 groups (n = 3) as a cement type and amount function. The groups were no-cement as control, TempBond NE (TB3mm, TB5mm, and TB8mm), FujiCEM-II (FC3mm, FC5mm, and FC8mm), and Panavia-F-2.0 (PC3mm, PC5mm, and PC8mm). Tafel's method estimated corrosion rate (icorr) and corresponding potential (Ecorr) from potentiodynamic curves. Electrochemical Impedance Spectroscopy (EIS) data was utilized to obtain Nyquist and Bode plots. An equivalent electrical circuit estimated polarization resistance (Rp) and double-layer capacitance (Cdl). Inductively coupled plasma mass spectrometry (ICP-MS) analysis was conducted to analyze the electrolyte solution after corrosion. pH measurements of the electrolyte were recorded before and after corrosion tests. Finally, the corroded surface was characterized by a 3D white-light microscope and scanning electron microscope. Statistical analysis was conducted using either one-way ANOVA followed by Tukey's Post Hoc test or Kruskal-Wallis followed by Dunn's test based on data distribution. Results: Based on cement amount, FC and PC significantly increased icorr in higher amounts (FC8mm-icorr = 8.22 × 10-8A/cm2, PC8mm-icorr = 5.61 × 10-8A/cm2) compared to control (3.35 × 10-8A/cm2). In contrast, TB3mm decreased icorr significantly compared to the control. As a function of cement type, FC increased icorr the most. EIS data agrees with these observations. Finally, corroded surfaces had higher surface roughness (Ra) compared to non-corroded surfaces. Conclusion: The study indicated that cement types FC and PC led to increased Ti-corrosion as a function of a higher amount. Hence, the implant stability could be impacted by the selection, excessive cement, and a potentially increased risk of peri-implantitis.

10.
Int J Biol Macromol ; 257(Pt 2): 128773, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096932

RESUMO

Periodontitis is a chronic inflammation of the periodontium caused by a persistent bacterial infection, resulting in destruction of the supporting structures of teeth. Analysis of microbial composition in saliva can inform periodontal status. Actinobacillus actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), and Streptococcus mutans (Sm) are among reported periodontal pathogens, and were used as model systems in this study. Our atomic force microscopic (AFM) study revealed that these pathogens are biological nanorods with dimensions of 0.6-1.1 µm in length and 500-700 nm in width. Current bacterial detection methods often involve complex preparation steps and require labeled reporting motifs. Employing surface-enhanced Raman spectroscopy (SERS), we revealed cell-type specific Raman signatures of these pathogens for label-free detection. It overcame the complexity associated with spectral overlaps among different bacterial species, relying on high signal-to-noise ratio (SNR) spectra carefully collected from pure species samples. To enable simple, rapid, and multiplexed detection, we harnessed advanced machine learning techniques to establish predictive models based on a large set of raw spectra of each bacterial species and their mixtures. Using these models, given a raw spectrum collected from a bacterial suspension, simultaneous identification of all three species in the test sample was achieved at 95.6 % accuracy. This sensing modality can be applied to multiplex detection of a broader range and a larger set of periodontal pathogens, paving the way for hassle-free detection of oral bacteria in saliva with little to no sample preparation.


Assuntos
Periodontite , Análise Espectral Raman , Humanos , Periodontite/microbiologia , Porphyromonas gingivalis , Periodonto , Saliva
11.
Adv Appl Ceram ; 122(3-4): 236-249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38108047

RESUMO

Carbide-derived carbon (CDC) was previously proposed as a surface modification method for hip implant applications since it showed excellent tribocorrosion performance under open-circuit potential (OCP) conditions. Nonetheless, a systematic evaluation of CDC's tribocorrosion properties was still missing. Therefore, our objective is to test CDC's tribocorrosion performance under various electrochemical conditions and to identify the synergism between wear and corrosion. Based on the findings, the variations in OCP for CDC (0.626 mV) is smaller than Ti6Al4V (1.91 mV), and CDC showed lower induced current than T6Al4V for all potentials, suggesting CDC is more stable than Ti6Al4V under tribocorrosive conditions. Eventually, the weight loss of Ti6Al4V (50.662±5.19 µg) was found to be significantly higher than that of CDC (4.965±5.19 µg), which agrees with the electrochemical results. In summary, CDC showed better tribocorrosion performance than Ti6Al4V and was determined as an Antagonism regime.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38525435

RESUMO

Tribocorrosion is an integration of two areas-tribology and corrosion. It can be defined as the material degradation caused by the combined effect of corrosion and tribological process at the material interfaces. Significant development has occurred in the field of tribocorrosion over the past years. This development is due to its applications in various fields, such as aerospace, marine, biomedical, and space. Focusing on biomedical applications, tribocorrosion finds its applications in the implants used in cardiovascular, spine, orthopedics, trauma, and dental areas. It was reported that around 7.2 million Americans are living with joint implants. Implant surgery is a traumatic and expensive procedure. Tribocorrosion can affect the lifespan of the implants, thus leading to implant failure and a potential cause of revision surgery. Hence, it is essential to understand how tribocorrosion works, its interaction with the implants, and what procedures can be implemented to protect materials from tribocorrosion. This paper discusses how tribocorrosion research has evolved over the past 11 years (2010-2021). This is a comprehensive overview of tribocorrosion research in biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA