Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 59(26): 7865-7875, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32976458

RESUMO

This paper presents a data-processing technique that improves the accuracy and precision of absorption-spectroscopy measurements by isolating the molecular absorbance signal from errors in the baseline light intensity (Io) using cepstral analysis. Recently, cepstral analysis has been used with traditional absorption spectrometers to create a modified form of the time-domain molecular free-induction decay (m-FID) signal, which can be analyzed independently from Io. However, independent analysis of the molecular signature is not possible when the baseline intensity and molecular response do not separate well in the time domain, which is typical when using injection-current-tuned lasers [e.g., tunable diode and quantum cascade lasers (QCLs)] and other light sources with pronounced intensity tuning. In contrast, the method presented here is applicable to virtually all light sources since it determines gas properties by least-squares fitting a simulated m-FID signal (comprising an estimated Io and simulated absorbance spectrum) to the measured m-FID signal in the time domain. This method is insensitive to errors in the estimated Io, which vary slowly with optical frequency and, therefore, decay rapidly in the time domain. The benefits provided by this method are demonstrated via scanned-wavelength direct-absorption-spectroscopy measurements acquired with a distributed-feedback (DFB) QCL. The wavelength of a DFB QCL was scanned across the CO P(0,20) and P(1,14) absorption transitions at 1 kHz to measure the gas temperature and concentration of CO. Measurements were acquired in a gas cell and in a laminar ethylene-air diffusion flame at 1 atm. The measured spectra were processed using the new m-FID-based method and two traditional methods, which rely on inferring (instead of rejecting) the baseline error within the spectral-fitting routine. The m-FID-based method demonstrated superior accuracy in all cases and a measurement precision that was ≈1.5 to 10 times smaller than that provided using traditional methods.

2.
Appl Opt ; 59(5): 1491-1500, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225408

RESUMO

A simulation technique enabling calibration-free measurements of gas properties (e.g., temperature, mole fraction) and lineshapes via wavelength- or frequency-modulation spectroscopy (WMS or FMS) is presented. Unlike previously developed models, this simulation technique accurately accounts for (1) absorption and dispersion physics and (2) variations in the WMS/FMS harmonic signals, which can result from intensity tuning induced by scanning the laser's carrier frequency [e.g., via injection-current tuning of tunable diode lasers (TDLs)]. As a result, this approach is applicable to both WMS and FMS experiments employing a wide variety of light sources and any modulation frequency [typically kilohertz (kHz) to gigahertz (GHz)]. The accuracy of the simulation technique is validated via comparison with (1) simulated signals produced by established WMS and FMS models under conditions where they are accurate and (2) experimental data acquired under conditions where existing models are inaccurate. Under conditions where existing WMS and FMS models are accurate, this simulation technique yields nearly identical (within 0.1%) results. For experimental validation, the wavelength of a TDL emitting near 1392 nm was scanned across a single absorption line of H2O with a half-width at half-maximum of 350 MHz while frequency modulation was performed at 100 MHz. The best-fit first-harmonic (1f) signal produced by this simulation technique agrees within 1.6% of the measured 1f signal, and the H2O mole fraction and transition collisional width corresponding to the best-fit 1f spectrum agree within 1% of expected values.

3.
Rev Sci Instrum ; 90(4): 045111, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31043046

RESUMO

This manuscript presents the design and initial application of a high-pressure combustion chamber (HPCC). The HPCC exhibits several unique design attributes to enable high-fidelity studies of propellant-combustion physics at high pressures. The HPCC employs a flangeless and weldless design to provide a compact, easy to access, and relatively light weight (for its size and pressure capability) test chamber. It has a cylindrical test volume of 13.1 L and is capable of operating at pressures from approximately 0.4 mbar to 200 bar. The vessel is equipped with a ZnSe window to enable the laser ignition of propellants and energetic materials and 4 sapphire windows (2″ diameter and 4″ × 2″ slots) to enable the use of multiple optical diagnostics spanning the ultraviolet to mid-infrared. The sapphire windows are mounted in plugs with adjustable length to bring the windows inside of the test volume and facilitate line-of-sight optical measurements. The vessel can be accessed from the top and bottom via removable 5″ diameter plugs, and the bottom plug can be modified to enable studies of gaseous jets and flames. Some of the HPCC's testing capabilities are demonstrated via high-speed IR imaging and laser-absorption-spectroscopy measurements of temperature and CO in laser-ignited HMX (i.e., 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane) flames at pressures from 2 to 25 bar.

4.
Appl Opt ; 57(25): 7117-7126, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30182969

RESUMO

The design and demonstration of a compact single-ended laser-absorption-spectroscopy sensor for measuring temperature and H2O in high-temperature combustion gases is presented. The primary novelty of this work lies in the design, demonstration, and evaluation of a sensor architecture that uses a single lens to provide single-ended, alignment-free (after initial assembly) measurements of gas properties in a combustor without windows. We demonstrate that the sensor is capable of sustaining operation at temperatures up to at least 625 K and is capable of withstanding direct exposure to high-temperature (≈1000 K) flame gases for long durations (at least 30 min) without compromising measurement quality. The sensor employs a fiber bundle and a 6 mm diameter antireflection-coated lens mounted in a 1/8'' NPT-threaded stainless-steel body to collect laser light that is backscattered off native surfaces. Distributed-feedback tunable diode lasers (TDLs) with a wavelength near 1392 nm and 1343 nm were used to interrogate well-characterized H2O absorption transitions using wavelength-modulation-spectroscopy techniques. The sensor was demonstrated with measurements of gas temperature and H2O mole fraction in a propane-air burner with a measurement bandwidth up to 25 kHz. In addition, this work presents an improved wavelength-modulation spectroscopy spectral-fitting technique that reduces computational time by a factor of 100 compared to previously developed techniques.

5.
Opt Lett ; 42(24): 5278-5281, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29240192

RESUMO

This work presents the development of wavelength-modulated planar laser-induced fluorescence (WM-PLIF) and its initial application to infrared imaging of carbon monoxide in a laminar flame. A continuous-wave quantum-cascade laser producing 50 mW near 4.8 µm was injection-current modulated at 1 kHz and scanned across the P(20) transition of CO at 20 Hz. The corresponding infrared-laser-induced fluorescence from 2065 cm-1 to 2155 cm-1 was imaged orthogonal to the laser sheet using a high-speed IR camera, and digital lock-in detection of the WM-PLIF first-harmonic signal (SF,1f) was performed to provide high-fidelity, background-free imaging of CO. Images of the peak-SF,1f signal are presented for a laminar CO-H2 diffusion flame in air at atmospheric pressure. We demonstrate that this technique is sensitive enough to image nascent CO in flames and present a strategy for simulating the WM-PLIF harmonic signals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA