Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 24(10): e14063, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37469244

RESUMO

To use the open-source Monte Carlo (MC) software calculations for TPS monitor unit verification of VMAT plans, delivered with the Varian TrueBeam linear accelerator, and compare the results with a commercial software product, following the guidelines set in AAPM Task Group 219. The TrueBeam is modeled in EGSnrc using the Varian-provided phase-space files. Thirteen VMAT TrueBeam treatment plans representing various anatomical regions were evaluated, comprising 37 treatment arcs. VMAT plans simulations were performed on a computing cluster, using 107 -109 particle histories per arc. Point dose differences at five reference points per arc were compared between Eclipse, MC, and the commercial software, MUCheck. MC simulation with 5 × 107 histories per arc offered good agreement with Eclipse and a reasonable average calculation time of 9-18 min per full plan. The average absolute difference was 3.0%, with only 22% of all points exceeding the 5% action limit. In contrast, the MUCheck average absolute difference was 8.4%, with 60% of points exceeding the 5% dose difference. Lung plans were particularly problematic for MUCheck, with an average absolute difference of approximately 16%. Our EGSnrc-based MC framework can be used for the MU verification of VMAT plans calculated for the Varian TrueBeam; furthermore, our phase space approach can be adapted to other treatment devices by using appropriate phase space files. The use of 5 × 107 histories consistently satisfied the 5% action limit across all plan types for the majority of points, performing significantly better than a commercial MU verification system, MUCheck. As faster processors and cloud computing facilities become even more widely available, this approach can be readily implemented in clinical settings.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Simulação por Computador , Software , Aceleradores de Partículas , Dosagem Radioterapêutica , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos
2.
Adv Radiat Oncol ; 8(4): 101242, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250285

RESUMO

Purpose: The feasibility of blinding applications for a medical physics residency program has yet to be demonstrated in the literature. We explore the application of an automated approach with human review and intervention to blind applications during the annual medical physics residency review cycle. Methods and Materials: Applications were blinded using an automated process and used for the first phase of residency review in the program. We retrospectively compared self-reported demographic and gender data with blinded and nonblinded cohorts from 2 sequential years of review from a medical physics residency program. Demographic data were analyzed comparing applicants with candidates selected to move to the next phase of the review process. Interrater agreement was also evaluated from the applicant reviewers. Results: We show the feasibility of blinding applications for a medical physics residency program. We observed no more than a 3% difference between the gender selection within the first phase of application review but greater differences when examining race and ethnicity between the 2 methods. The greatest difference was shown to be between Asian and White candidates, where there are statistical differences in the scores in the rubric categories of essay and overall impression. Conclusions: We suggest that each training program critically evaluate its selection criteria for potential sources of bias within the review process. We recommend further critical investigation of processes to promote equity and inclusion to ensure the methods and outcomes are aligned with the mission of the program. Finally, we recommend that the common application provide an option for blinding applications at the source so this can be an option to facilitate efforts for evaluating unconscious bias in the review process.

3.
Clin Case Rep ; 8(12): 3322-3327, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33363926

RESUMO

Anti-glomerular basement membrane disease can rapidly lead to renal failure and blood pressure dysregulation. A rare complication is hypertensive encephalopathy in the form of seizures. Patients who have a negative initial seizure workup should have an MRI. These patients need tight blood pressure control and monitoring to prevent future seizures.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5085-5088, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33019130

RESUMO

We apply a new hardware and software platform called the Hamiltonian Engine for Radiotherapy Optimization (HERO) to the problem of Intensity-Modulated Radiation Therapy (IMRT) treatment planning. HERO solves large general-form binary optimization problems by decomposing them into sub-problems and approximating them using a quadratic pseudo-boolean function. Optimizing the resulting function becomes a quadratic unconstrained binary optimization (QUBO) problem, which has been widely studied and has numerous applications in various fields. A Quantum Annealer (QA) approach has been previously investigated to solve QUBO problems, including IMRT optimization. However, the QA can only accommodate a small number of variables and requires several hours to obtain optimized plans. HERO acts as an optimizer for QUBO problems, which not only addresses these shortcomings but also relies solely on conventional hardware design while operating at room temperature. We evaluate HERO on seven prostate IMRT cases with clinical objectives, each using approximately 6000 beamlets. Our method was compared to the commercial treatment planning software, Eclipse, for both time-to-solution and plan quality. HERO solves most cases in about 30 seconds, with significantly lower objective function scores than Eclipse. The results indicate that HERO is promising for radiation therapy optimization problems. Additionally, HERO has the potential to be applied to Volumetric-Modulated Arc Therapy (VMAT) and other complex types of treatment planning.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Software
5.
Med Phys ; 47(12): 6053-6067, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32978967

RESUMO

PURPOSE: A treatment planning system (TPS) produces volumetric modulated arc therapy (VMAT) plans by applying an optimization process to an objective function, followed by an accurate calculation of the final, deliverable dose. However, during the optimization step, a rapid dose calculation algorithm is required, which reduces its accuracy and its representation of the objective function space. Monte Carlo (MC) routines, considered the gold standard in accuracy, are currently too slow for practical comprehensive VMAT optimization. Therefore, we propose a novel approach called enhanced optimization (EO), which employs the TPS VMAT plan as a starting point, and applies small perturbations to nudge the solution closer to a true objective minimum. The perturbations consist of beamlet dose matrices, calculated using MC routines on a distributed-computing framework. METHODS: DICOM files for clinical VMAT plans files are exported from the TPS and used to generate input files for the EGSnrc MC toolkit. Beamlet doses are calculated using the MC routines, each corresponding to a single multileaf collimator leaf from a single control point traveling 0.5 cm in or out of the field. A typical VMAT plan requires 5000 to 10 000 beamlets, which may be calculated overnight. This results in a ternary-valued objective function, which may use the same clinical objectives as the original VMAT plan. A simple greedy search algorithm is applied to minimize this function and determine the optimal set of ternary variables. The resulting modified control point parameters are imported into the TPS to calculate the final, deliverable dose, and to compare the EO plan with the original. EO was evaluated retrospectively on seven VMAT plans (two adult brain, one pediatric brain, two head and neck, and two prostate). Additionally, the use of stricter objectives was investigated for two of the cases: the left cochlea planning organ at risk (OAR) volume objective for the pediatric brain case, and the rectum objective for a prostate case. RESULTS: EO produced improved objective scores (by 6% to 60%) and dose-volume histograms (DVH) for the brain plans and the head and neck plans. For each of these plans, the target dose minimum and homogeneity were preserved, while one or more of the OAR DVH's was reduced. Although EO also reduced the objective scores for the prostate plans (by 46% and 79%), their absolute score and DVH improvements were not substantial. The stricter objective on the pediatric brain case resulted in lower dose to the OAR without compromising the target dose. However, the rectum dose in the prostate case could not be improved without reducing dose homogeneity to the planning target volume, suggesting that VMAT prostate cases may already be highly optimized by the TPS. CONCLUSION: We have developed a novel approach to improving the dose distribution of VMAT plans, which relies on MC calculations to provide small modifications to the control points. This method may be particularly useful for complex treatments in which a certain OAR is of concern and it is difficult for the treatment planner to obtain an acceptable solution with the TPS. Further development will reduce the beamlet computation time and result in more sophisticated EO treatment planning methods.


Assuntos
Radioterapia de Intensidade Modulada , Criança , Humanos , Masculino , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
6.
J Appl Clin Med Phys ; 20(6): 60-69, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31127699

RESUMO

We have developed a fast and accurate in-house Monte Carlo (MC) secondary monitor unit (MU) check method, based on the EGSnrc system, for independent verification of volumetric modulated arc therapy (VMAT) treatment planning system dose calculations, in accordance with TG-114 recommendations. For a VMAT treatment plan created for a Varian Trilogy linac, DICOM information was exported from Eclipse. An open-source platform was used to generate input files for dose calculations using the EGSnrc framework. The full VMAT plan simulation employed 107 histories, and was parallelized to run on a computer cluster. The resulting 3ddose matrices were converted to the DICOM format using CERR and imported into Eclipse. The method was evaluated using 35 clinical VMAT plans of various treatment sites. For each plan, the doses calculated with the MC approach at four three-dimensional reference points were compared to the corresponding Eclipse calculations, as well as calculations performed using the clinical software package, MUCheck. Each MC arc simulation of 107 particles required 13-25 min of total time, including processing and calculation. The average discrepancies in calculated dose values between the MC method and Eclipse were 2.03% (compared to 3.43% for MUCheck) for prostate cases, 2.45% (3.22% for MUCheck) for head and neck cases, 1.7% (5.51% for MUCheck) for brain cases, and 2.84% (5.64% for MUCheck) for miscellaneous cases. Of 276 comparisons, 201 showed greater agreement between the treatment planning system and MC vs MUCheck. The largest discrepancies between MC and MUCheck were found in regions of high dose gradients and heterogeneous densities. By parallelizing the calculations, point-dose accuracies of 2-7%, sufficient for clinical secondary checks, can be achieved in a reasonable amount of time. As computer clusters and/or cloud computing become more widespread, this method will be useful in most clinical setups.


Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias de Cabeça e Pescoço/radioterapia , Método de Monte Carlo , Imagens de Fantasmas , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Masculino , Aceleradores de Partículas/instrumentação , Dosagem Radioterapêutica
7.
PeerJ ; 4: e2296, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27672490

RESUMO

Madagascar's subfossil record preserves a diverse community of animals including elephant birds, pygmy hippopotamus, giant lemurs, turtles, crocodiles, bats, rodents, and carnivorans. These fossil accumulations give us a window into the island's past from 80,000 years ago to a mere few hundred years ago, recording the extinction of some groups and the persistence of others. The crocodylian subfossil record is limited to two taxa, Voay robustus and Crocodylus niloticus, found at sites distributed throughout the island. V. robustus is extinct while C. niloticus is still found on the island today, but whether these two species overlapped temporally, or if Voay was driven to extinction by competing with Crocodylus remains unknown. While their size and presumed behavior was similar to each other, nearly nothing is known about the growth and development of Voay, as the overwhelming majority of fossil specimens represent mature adult individuals. Here we describe a nearly complete juvenile crocodylian specimen from Anjohibe Cave, northwestern Madagascar. The specimen is referred to Crocodylus based on the presence of caviconchal recesses on the medial wall of the maxillae, and to C. niloticus based on the presence of an oval shaped internal choana, lack of rostral ornamentation and a long narrow snout. However, as there are currently no described juvenile specimens of Voay robustus, it is important to recognize that some of the defining characteristics of that genus may have changed through ontogeny. Elements include a nearly complete skull and many postcranial elements (cervical, thoracic, sacral, and caudal vertebrae, pectoral elements, pelvic elements, forelimb and hindlimb elements, osteoderms). Crocodylus niloticus currently inhabits Madagascar but is locally extinct from this particular region; radiometric dating indicates an age of ∼460-310 years before present (BP). This specimen clearly represents a juvenile based on the extremely small size and open sutures/detached neural arches; total body length is estimated to be ∼1.1 m (modern adults of this species range from ∼4-6 m). This fossil represents the only juvenile subfossil crocodylian specimen reported from Madagascar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA