Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Adv Drug Deliv Rev ; 209: 115301, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38570141

RESUMO

Subcutaneous (SC) injections can be associated with local pain and discomfort that is subjective and may affect treatment adherence and overall patient experience. With innovations increasingly focused on finding ways to deliver higher doses and volumes (≥2 mL), there is a need to better understand the multiple intertwined factors that influence pain upon SC injection. As a priority for the SC Drug Development & Delivery Consortium, this manuscript provides a comprehensive review of known attributes from published literature that contribute to pain/discomfort upon SC injection from three perspectives: (1) device and delivery factors that cause physical pain, (2) formulation factors that trigger pain responses, and (3) human factors impacting pain perception. Leveraging the Consortium's collective expertise, we provide an assessment of the comparative and interdependent factors likely to impact SC injection pain. In addition, we offer expert insights and future perspectives to fill identified gaps in knowledge to help advance the development of patient-centric and well tolerated high-dose/high-volume SC drug delivery solutions.

2.
J Pharm Sci ; 112(4): 909-921, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36513146

RESUMO

The International Conference of Harmonization (ICH) Q6A document provides guidance on setting specifications for new drug substances and drug products.1 In this paper we focus on decision trees 4 (#1) to (#3) in the guidance related to solid-state form transformation. Form transformation could occur from use of high energy forms to overcome solubility challenges or stresses from manufacturing processes. The decision trees provide guidance on when and how polymorphic form changes should be monitored and controlled. However, guidance is high level and does not capture aspects related to assessments needed to understand if there is a risk of transformation or tools that can be integrated to understand the severity of bioavailability impact at different stages of development. The objective of this paper is therefore to provide comprehensive chemistry manufacturing and controls (CMC) and regulatory strategies to manage the risk of form transformation. This includes practical workflows for form transformation risk assessment, analytical tools to detect and quantify the transformation including their shortcomings, biopharmaceutical tools to understand the severity of transformation risk and if needed justify the limits based on clinical relevance. Finally, a few case studies are discussed that capture how the workflow can be used to manage transformation risk.


Assuntos
Estabilidade de Medicamentos , Solubilidade , Disponibilidade Biológica , Medição de Risco
3.
Pharm Res ; 36(12): 164, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31637544

RESUMO

PURPOSE: To describe a stepwise approach to evaluate the pH effect for a weakly basic drug by in vitro, in vivo and in silico techniques and identify a viable mitigation strategy that addresses the risk. METHODS: Clinical studies included assessment of the pH effect with famotidine. In vitro dissolution was evaluated in various biorelevant media and in a pH-shift test. PK studies in dogs were conducted under pentagastrin or famotidine pre-treatment and GastroPlus was employed to model human and dog PK data and simulate the performance in human. RESULTS: Clinical data indicated considerable pH dependent absorption of the drug when dosed in the presence of H2-antagonists. In vitro dissolution and in vivo dog data confirmed that the observed pH effect was due to reduced dissolution rate and lower solubility at increased gastric and intestinal pH. A salt form was identified to overcome the effect by providing fast dissolution and prolonged supersaturation. GastroPlus simulations predicted a mitigation of the pH effect by the salt. CONCLUSIONS: The drug exhibited a strong pH-effect in humans. The in vitro, in vivo and modeling approach provides a systematic workflow to evaluate the risk of a new drug and identify a strategy able to mitigate the risk.


Assuntos
Antiulcerosos/farmacocinética , Simulação por Computador , Composição de Medicamentos/métodos , Famotidina/farmacocinética , Absorção Intestinal , Modelos Biológicos , Administração Oral , Animais , Antiulcerosos/administração & dosagem , Disponibilidade Biológica , Cães , Famotidina/administração & dosagem , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino
4.
Regul Toxicol Pharmacol ; 100: 35-44, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30291877

RESUMO

Protein therapeutics represent a rapidly growing proportion of new medicines being developed by the pharmaceutical industry. As with any new drug, an Occupational Exposure Limit (OEL) should be developed to ensure worker safety. Part of the OEL determination addresses bioavailability (BA) after inhalation, which is poorly understood for protein therapeutics. To explore this, male Sprague-Dawley rats were exposed intravenously or by nose-only inhalation to one of five test proteins of varying molecular size (10-150 kDa), including a polyethylene glycol-conjugated protein. Blood, lung tissue and bronchoalveolar lavage (BAL) fluid were collected over various time-points depending on the expected test protein clearance (8 minutes-56 days), and analyzed to determine the pharmacokinetic profiles. Since the BAL half-life of the test proteins was observed to be > 4.5 h after an inhalation exposure, accumulation and direct lung effects should be considered in the hazard assessment for protein therapeutics with lung-specific targets. The key finding was the low systemic bioavailability after inhalation exposure for all test proteins (∼≤1%) which did not appear molecular weight-dependent. Given that this study examined the inhalation of typical protein therapeutics in a manner mimicking worker exposure, a default 1% BA assumption is reasonable to utilize when calculating OELs for protein therapeutics.


Assuntos
Polietilenoglicóis/farmacocinética , Proteínas/farmacocinética , Administração por Inalação , Animais , Disponibilidade Biológica , Líquido da Lavagem Broncoalveolar/química , L-Lactato Desidrogenase/metabolismo , Pulmão/metabolismo , Masculino , Concentração Máxima Permitida , Ratos Sprague-Dawley , Receptores Fc/metabolismo
5.
AAPS PharmSciTech ; 19(1): 348-357, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28741139

RESUMO

Liquid crystal lipid-based formulations are an effective approach to prolong pharmacokinetics and reduce burst release of a drug on subcutaneous delivery. The objective of this paper was to investigate the influence of phase structures of a lipid-based liquid crystal delivery system and its associated mechanical properties on the release profile of a peptide. It was hypothesized that release of drug molecules are closely related to the mechanical properties that are controlled by phase structures. Experimentally, the relationship between phase structures of lipid liquid crystal system-soy phosphatidyl choline (SPC) and glycerol dioleate (GDO) in water were characterized by polarized light microscopy and small angle X-ray diffraction. Their rheological properties were evaluated with a rheometer and the in vitro release of the peptide as a measure drug release from the LC-depot injection. Three phases: disordered phase, lamellar phase, mixtures of cubic, lamellar, and hexagonal phases were detected by varying formulation compositions. A significant difference in rheological behavior was observed. The disordered phase displayed some attributes of typical Newtonian fluid with lowest viscosity while the lamellar phase showed a shear thinning behavior. Regarding the mechanical strength, the lamellar phase presents the highest storage modulus due to its layer structure followed by mixed phases. Comparing release profiles, the lamellar phase produced a fast release followed by the mixture of phases. In conclusion, this study demonstrates the ability to characterize LC phase structures with microscopy, small angle X-ray diffraction, and rheological measurements and their link to modulating a peptide release profile.


Assuntos
Cristais Líquidos/química , Oligopeptídeos/administração & dosagem , Preparações de Ação Retardada , Diglicerídeos , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Excipientes , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Lipídeos/química , Oligopeptídeos/química , Fosfatidilcolinas , Reologia , Solubilidade , Viscosidade , Água
6.
AAPS J ; 19(5): 1348-1358, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28681160

RESUMO

This article discusses the range of outcomes from biopharmaceutical studies of specific modified release (MR) product examples in preclinical models and humans. It touches upon five major biopharmaceutical areas for MR drug products: (1) evidence for regional permeability throughout the GI tract, (2) susceptibility to food-effect, (3) susceptibility to pH-effect, (4) impact of chronopharmacology in designing MR products, and (5) implications to narrow therapeutic index products. Robust bioperformance requires that product quality is met through a thorough understanding of the appropriate critical quality attributes that ensure reliable and robust manufacture of a MR dosage form. The quality-by-design (QbD) aspects of MR dosage form design and development are discussed with the emphasis on the regulatory view of the data required to support dosage form development.


Assuntos
Biofarmácia , Descoberta de Drogas , Administração Oral , Química Farmacêutica , Liberação Controlada de Fármacos , Interações Alimento-Droga , Humanos , Concentração de Íons de Hidrogênio
7.
Mol Pharm ; 12(12): 4434-44, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26536519

RESUMO

BMS-914392 is a tricyclic pyranoquinoline BCS class 2 weak base that demonstrates high solubility in low pH environments. Initial clinical studies indicated that rapid release of high dose BMS-914392 led to transient adverse events associated with peak plasma concentrations. A modified release (MR) formulation strategy was proposed to suppress the peak blood concentration and maintain total exposure to overcome the adverse effects. Three modified release prototype formulations were developed and tested via a USP 3 dissolution method to verify that each formulation can effectively slow the release of BMS-914392. A pharmacokinetic (PK) absorption model was employed to guide the formulation development and selection. Simulations showed good agreement with plasma levels measured after oral dosing in dogs. Identification of key formulation factors to achieve release rates suitable for blunting peak blood levels without diminishing exposure were achieved through combined preclinical data and use of GastroPlus simulations. PK absorption model refinements based on phase 1 data, dog pharmacokinetic results, and in vitro data provided reliable predictions of human absorption profiles and variability in patients. All three prototype formulations demonstrated lower maximum plasma concentrations of BMS-914392 and maintained satisfactory relative bioavailability. Both the PK absorption model and subsequent clinical data indicated that an acidified hydrophilic matrix MR formulation had the greatest potential to reduce the incidence of adverse events and showed the best exposure profile in fasted state healthy subjects with and without famotidine coadministration. The risk based development process achieved successful screening and selection of a suitable modified release formulation to enable clinical efficacy trials.


Assuntos
Quinolinas/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Simulação por Computador , Estudos Cross-Over , Cães , Famotidina/administração & dosagem , Humanos , Absorção Intestinal , Masculino , Modelos Biológicos , Quinolinas/administração & dosagem , Solubilidade
8.
AAPS J ; 17(4): 988-98, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25933598

RESUMO

In vitro and in vivo experimental models are frequently used to assess a new chemical entity's (NCE) biopharmaceutical performance risk for food effect (FE) in humans. Their ability to predict human FE hinges on replicating key features of clinical FE studies and building an in vitro-in vivo relationship (IVIVR). In this study, 22 compounds that span a wide range of physicochemical properties, Biopharmaceutics Classification System (BCS) classes, and food sensitivity were evaluated for biorelevant dissolution in fasted- and fed-state intestinal media and the dog fed/fasted-state pharmacokinetic model. Using the area under the curve (AUC) as a performance measure, the ratio of the fed-to-fasted AUC (FE ratio) was used to correlate each experimental model to FE ratio in humans. A linear correlation was observed for the in vitro dissolution-human IVIVR (R (2) = 0.66, % mean square error 20.7%). Similarly, the dog FE ratio correlated linearly with the FE ratio in humans (R (2) = 0.74, % mean square error 16.25%) for 15 compounds. Data points near the correlation line indicate dissolution-driven mechanism for food effect, while deviations from the correlation line shed light on unique mechanisms that can come into play such as GI physiology or unusual physicochemical properties. In summary, fed/fasted dissolution studies and dog PK studies show a reasonable correlation to human FE, hence are useful tools to flag high-risk NCEs entering clinical development. Combining kinetic dissolution, dog FE model and in silico modeling one can study FE mechanism and formulation strategies to mitigate the FE risk.


Assuntos
Simulação por Computador , Interações Alimento-Droga , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Animais , Área Sob a Curva , Cães , Jejum , Humanos , Masculino , Preparações Farmacêuticas/química , Farmacocinética , Solubilidade , Especificidade da Espécie
9.
Int J Pharm ; 465(1-2): 210-7, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24508807

RESUMO

The aim of this study was to investigate novel approaches to determine spray dried dispersion (SDD) specific particle characteristics through the use of imaging based technologies. The work demonstrates approaches that can be applied in order to access quantitative approximations for powder characteristics for hollow particles, such as SDD. Cryo-SEM has been used to measure the solid volume fraction and/or particle density of SDD particles. Application of this data to understand the impact of spray drying process conditions on SDD powder properties, and their impact on processability and final dosage form quality were investigated. The use of data from a Morphologi G3 image based particle characterisation system was also examined in order to explain both the propensity and extent of attrition within a series of SDD samples, and also demonstrate the use of light transmission data to assess the relative wall thickness of SDD particles. Such approaches demonstrate a means to access potentially useful information that can be linked to important particle characteristics for SDD materials which, in addition to the standard bulk powder measurements such as bulk density, may enable a better understanding of such materials and their impact on downstream processability and final dosage form acceptability.


Assuntos
Preparações Farmacêuticas/química , Tecnologia Farmacêutica/métodos , Química Farmacêutica , Microscopia Crioeletrônica , Dessecação , Luz , Microscopia Eletrônica de Varredura , Modelos Químicos , Tamanho da Partícula , Pós , Espalhamento de Radiação , Propriedades de Superfície
10.
AAPS PharmSciTech ; 15(2): 407-16, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24442773

RESUMO

This study presents a formulation approach that was shown to mitigate the dramatic food effect observed for a BCS Class II drug. In vitro (dissolution), in vivo (dog), and in silico (GastroPlus®) models were developed to understand the food effect and design strategies to mitigate it. The results showed that such models can be used successfully to mimic the clinically observed food effect. GastroPlus® modeling showed that food effect was primarily due to the extensive solubilization of the drug into the dietary lipid content of the meal. Several formulations were screened for dissolution rate using the biorelevant dissolution tests. Surfactant type and binder amount were found to play a significant role in the dissolution rate of the tablet prototypes that were manufactured using a high-shear wet granulation process. The performance of the lead prototypes (exhibiting best in vitro dissolution performance) was tested in dogs and human subjects. A new formulation approach, where vitamin E TPGS was included in the tablet formulation, was found to mitigate the food effect in humans.


Assuntos
Química Farmacêutica , Interações Alimento-Droga , Animais , Cães , Humanos , Solubilidade
11.
Mol Pharm ; 10(11): 4063-73, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24032349

RESUMO

Weak base therapeutic agents can show reduced absorption or large pharmacokinetic variability when coadministered with pH-modifying agents, or in achlorhydria disease states, due to reduced dissolution rate and/or solubility at high gastric pH. This is often referred to as pH-effect. The goal of this study was to understand why some drugs exhibit a stronger pH-effect than others. To study this, an API-sparing, two-stage, in vitro microdissolution test was developed to generate drug dissolution, supersaturation, and precipitation kinetic data under conditions that mimic the dynamic pH changes in the gastrointestinal tract. In vitro dissolution was assessed for a chemically diverse set of compounds under high pH and low pH, analogous to elevated and normal gastric pH conditions observed in pH-modifier cotreated and untreated subjects, respectively. Represented as a ratio between the conditions, the in vitro pH-effect correlated linearly with clinical pH-effect based on the Cmax ratio and in a non-linear relationship based on AUC ratio. Additionally, several in silico approaches that use the in vitro dissolution data were found to be reasonably predictive of the clinical pH-effect. To explore the hypothesis that physicochemical properties are predictors of clinical pH-effect, statistical correlation analyses were conducted using linear sequential feature selection and partial least-squares regression. Physicochemical parameters did not show statistically significant linear correlations to clinical pH-effect for this data set, which highlights the complexity and poorly understood nature of the interplay between parameters. Finally, a strategy is proposed for implementation early in clinical development, to systematically assess the risk of clinical pH-effect for new molecular entities that integrates physicochemical analysis and in vitro, in vivo and in silico methods.


Assuntos
Medição de Risco , Absorção , Acloridria/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Modelos Teóricos
12.
Bioorg Med Chem Lett ; 23(11): 3157-61, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23632269

RESUMO

Calcitonin gene-related peptide (CGRP) receptor antagonists have been shown to be efficacious as abortive migraine therapeutics with the absence of cardiovascular liabilities that are associated with triptans. Herein, we report the discovery of a highly potent CGRP receptor antagonist, BMS-742413, with the potential to provide rapid onset of action through intranasal delivery. The compound displays excellent aqueous solubility, oxidative stability, and toxicological profile. BMS-742413 has good intranasal bioavailability in the rabbit and shows a robust, dose-dependent inhibition of CGRP-induced increases in marmoset facial blood flow.


Assuntos
Amidas/química , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Indazóis/química , Quinolonas/química , Administração Intranasal , Amidas/farmacologia , Amidas/uso terapêutico , Animais , Células CACO-2 , Callithrix , Vasos Coronários/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Face/irrigação sanguínea , Humanos , Indazóis/farmacologia , Indazóis/uso terapêutico , Transtornos de Enxaqueca/tratamento farmacológico , Quinolonas/farmacologia , Quinolonas/uso terapêutico , Coelhos , Ratos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia
13.
Bioorg Med Chem Lett ; 23(6): 1870-3, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23402880

RESUMO

Various substituted indazole and benzoxazolone amino acids were investigated as d-tyrosine surrogates in highly potent CGRP receptor antagonists. Compound 3, derived from the 7-methylindazole core, afforded a 30-fold increase in CGRP binding potency compared with its unsubstituted indazole analog 1. When dosed at 0.03mg/kg SC, compound 2 (a racemic mixture of 3 and its (S)-enantiomer) demonstrated robust inhibition of CGRP-induced increases in mamoset facial blood flow up to 105min. The compound possesses a favorable predictive in vitro toxicology profile, and good aqueous solubility. When dosed as a nasal spray in rabbits, 3 was rapidly absorbed and showed good intranasal bioavailability (42%).


Assuntos
Aminoácidos/química , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Indazóis/síntese química , Quinazolinonas/síntese química , Tirosina/química , Administração Intranasal , Aminoácidos/síntese química , Aminoácidos/farmacocinética , Animais , Benzoxazóis/química , Disponibilidade Biológica , Meia-Vida , Indazóis/química , Indazóis/farmacocinética , Ligação Proteica , Quinazolinonas/química , Quinazolinonas/farmacocinética , Coelhos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Relação Estrutura-Atividade
14.
AAPS J ; 14(3): 591-600, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22644702

RESUMO

Modeling and simulation of drug dissolution and oral absorption has been increasingly used over the last decade to understand drug behavior in vivo based on the physicochemical properties of Active Pharmaceutical Ingredients (API) and dosage forms. As in silico and in vitro tools become more sophisticated and our knowledge of physiological processes has grown, model simulations can provide a valuable confluence, tying-in in vitro data with in vivo data while offering mechanistic insights into clinical performance. To a formulation scientist, this unveils not just the parameters that are predicted to significantly impact dissolution/absorption, but helps probe explanations around drug product performance and address specific in vivo mechanisms. In formulation, development, in silico dissolution-absorption modeling can be effectively used to guide: API selection (form comparison and particle size properties), influence clinical study design, assess dosage form performance, guide strategy for dosage form design, and breakdown clinically relevant conditions on dosage form performance (pH effect for patients on pH-elevating treatments, and food effect). This minireview describes examples of these applications in guiding product development including those with strategies to mitigate observed clinical exposure liability or mechanistically probe product in vivo performance attributes.


Assuntos
Modelos Teóricos , Administração Oral , Formas de Dosagem , Humanos , Concentração de Íons de Hidrogênio , Solubilidade , Equivalência Terapêutica
15.
Pharm Res ; 29(10): 2765-76, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22315020

RESUMO

PURPOSE: To identify the mechanism behind the unexpected bio-performance of two amorphous solid dispersions: BMS-A/PVP-VA and BMS-A/HPMC-AS. METHODS: Solubility of crystalline BMS-A in PVP-VA and HPMC-AS was measured by DSC. Drug-polymer interaction parameters were obtained by Flory-Huggins model fitting. Drug dissolution kinetics of spray-dried dispersions were studied under sink and non-sink conditions. BMS-A supersaturation was studied in the presence of pre-dissolved PVP-VA and HPMC-AS. Potency and crystallinity of undissolved solid dispersions were determined by HPLC and DSC. Polymer dissolution kinetics were obtained by mass balance calculation. Bioavailability of solid dispersions was assessed in dogs. RESULTS: In solid state, both polymers are miscible with BMS-A, while PVP-VA solublizes the drug better. BMS-A dissolves similarly from both solid dispersions in vitro regardless of dissolution method, while the HPMC-AS dispersion performed much better in vivo. At the same concentration, HPMC-AS is more effective in prolonging BMS-A supersaturation; this effect was negated by the slow dissolution rate of HPMC-AS. Further study revealed that fast PVP-VA dissolution resulted in elevated drug loading in undissolved dispersions and facilitated drug recrystallization before complete release. In contrast, the hydrophobicity and slower HPMC-AS dissolution prevented BMS-A recrystallization within the HPMC-AS matrix for >24 h. CONCLUSIONS: The lower bioavailability of PVP-VA dispersion was attributed to BMS-A recrystallization within the undissolved dispersion, due to hydrophilicity and fast PVP-VA dissolution rate. Polymer selection for solid dispersion development has significant impact on in vivo performance besides physical stability.


Assuntos
Metilcelulose/química , Preparações Farmacêuticas/química , Pirrolidinas/química , Soluções/química , Compostos de Vinila/química , Animais , Disponibilidade Biológica , Cristalização/métodos , Cães , Interações Hidrofóbicas e Hidrofílicas , Cinética , Masculino , Polímeros/química , Solubilidade , Água/química
16.
J Pharm Sci ; 99(1): 1-20, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19499570

RESUMO

Over the past few decades alternate routes of administration have gained significant momentum and attention, to complement approved drug products, or enable those that cannot be delivered by the oral or parenteral route. Intranasal, buccal/sublingual, pulmonary, and transdermal routes being the most promising non-invasive systemic delivery options. Considering alternate routes of administration early in the development process may be useful to enable new molecular entities (NME) that have deficiencies (extensive first-pass metabolism, unfavorable physicochemical properties, gastro-intestinal adverse effects) or suboptimal pharmacokinetic profiles that are identified in preclinical studies. This review article describes the various delivery considerations and extraneous factors in developing a strategy to pursue an alternate route of administration for systemic delivery. The various delivery route options are outlined with their pros and cons; key criteria and physicochemical attributes that would make a drug a suitable candidate are discussed; approaches to assess delivery feasibility, toxicity at the site of delivery, and overall developability potential are described; and lastly, product trends and their disease implications are highlighted to underscore treatment precedence that help to build scientific rationale for the pursuit of an alternate route of administration.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas/administração & dosagem , Sistemas de Liberação de Medicamentos/instrumentação , Humanos , Farmacocinética
17.
Int J Pharm ; 366(1-2): 218-20, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19027057

RESUMO

Alternate delivery route of therapeutic peptides is an attractive non-invasive option to patients who must chronically self-administer their medication through injections. In recent years, much attention has centered on pulmonary peptide delivery of peptide drugs such as insulin and GLP-1 mimetic peptides in the treatment of type II diabetes. In this study, we assessed the feasibility of delivering BMS-686117, an 11-mer GLP-1 receptor peptide agonist, to the lung in rats via intratracheal administration. The pharmacokinetic profiles of three spray-dried, prototype inhaled powder formulations, 80/20 BMS-686117/trehalose (I), 100% BMS-686117 (II), and 20/80 BMS-686117/mannitol (III), as well as a lyophilized BMS-686117 powder, were compared with intravenously and subcutaneously administered peptide. The spray-dried formulations were mostly spherical particles with narrow particle size distribution between 2 to 10 microm, which are better suited for inhalation delivery than the lyophilized, irregular shape powder with a wide particle size distribution between 2 to 100 microm. Prototype III exhibited the best physical characteristics and in vivo performance, with bioavailability of 45% relative to subcutaneous administration. The T(max) for lung delivered peptide formulations were almost twice as fast as subcutaneous injection, suggesting potential for rapid absorption and onset of action. This study demonstrated that pulmonary delivery is a promising, non-invasive route for the administration of BMS-686117.


Assuntos
Hipoglicemiantes/farmacocinética , Oligopeptídeos/farmacocinética , Receptores de Glucagon/agonistas , Administração por Inalação , Animais , Disponibilidade Biológica , Excipientes/química , Liofilização , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hipoglicemiantes/administração & dosagem , Pulmão/metabolismo , Masculino , Manitol/química , Oligopeptídeos/administração & dosagem , Tamanho da Partícula , Pós , Ratos , Ratos Sprague-Dawley , Trealose/química
18.
J Pharm Sci ; 98(2): 495-502, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18506818

RESUMO

The goal of this study was to evaluate biomarkers of nasal mucosal damage for rapid assessment of irritancy potential of formulations in the rat nasal lavage model, a tool to facilitate nasal formulation development prior to histopathology studies. The nasal cavity of anesthetized rats was lavaged with normal saline 20 min pos-tdose. The collected fluid was analyzed for secreted total protein and biomarkers. Solutions tested include: normal saline, buffers, benzalkonium chloride (BAC), lysophosphatidylcholine (LPC), and four marketed nasal products. Total protein, lactate dehydrogenase and interleukin-1alpha biomarkers were secreted to varying degrees. BAC (0.2%) and LPC (0.5%) exhibiting the strongest response with a signal window ranging from 3.4- to 87-fold greater levels than normal saline. Buffer treatments, excipients, and most marketed nasal products yielded levels similar to normal saline. There was a weak correlation between formulation osmolarity and surface tension with any of the biomarkers. Each nasal formulation elicited a unique protein and biomarker profile with total protein secretion correlated with IL-1alpha secretion suggesting the potential for an inflammatory response. Taken together, rapid and potentially mechanistic information on the preclinical acute irritancy potential of formulations was assessed in the rat nasal lavage model by benchmarking treatments relative to controls and marketed nasal products.


Assuntos
Biomarcadores/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Excipientes/toxicidade , Irritantes/toxicidade , Mucosa Nasal/efeitos dos fármacos , Proteínas/metabolismo , Testes de Toxicidade Aguda , Administração Intranasal , Animais , Química Farmacêutica , Excipientes/administração & dosagem , Excipientes/química , Interleucina-1alfa/metabolismo , Irritantes/administração & dosagem , Irritantes/química , L-Lactato Desidrogenase/metabolismo , Masculino , Líquido da Lavagem Nasal/química , Mucosa Nasal/metabolismo , Concentração Osmolar , Peroxidase/metabolismo , Ratos , Ratos Sprague-Dawley , Tensão Superficial , Fatores de Tempo
19.
J Med Chem ; 51(16): 4858-61, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18665579

RESUMO

Calcitonin gene-related peptide (CGRP) has been implicated in the pathogenesis of migraine. Early chemistry leads suffered from modest potency, significant CYP3A4 inhibition, and poor aqueous solubility. Herein, we describe the optimization of these leads to give 4 (BMS-694153), a molecule with outstanding potency, a favorable predictive toxicology profile, and remarkable aqueous solubility. Compound 4 has good intranasal bioavailability in rabbits and shows dose-dependent activity in validated in vivo and ex vivo migraine models.


Assuntos
Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Indazóis/uso terapêutico , Transtornos de Enxaqueca/tratamento farmacológico , Quinazolinonas/uso terapêutico , Administração Intranasal , Animais , Disponibilidade Biológica , Peptídeo Relacionado com Gene de Calcitonina/antagonistas & inibidores , Callithrix , Vasos Coronários/efeitos dos fármacos , Face/irrigação sanguínea , Humanos , Indazóis/administração & dosagem , Indazóis/síntese química , Quinazolinonas/administração & dosagem , Quinazolinonas/síntese química , Coelhos , Fluxo Sanguíneo Regional/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
20.
Arch Pharm Res ; 30(8): 1002-7, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17879754

RESUMO

Permeability estimates using Caco-2 cells do not accurately predict the absorption of hydrophilic drugs that are primarily absorbed via the paracellular pathway. The objective of this study was to investigate whether modulation of tight junctions would help differentiation of paracellularly absorbed compounds. Tight junctions in Caco-2 cell monolayers were manipulated using calcium depletion approaches to decrease the transepithelial electrical resistance (TEER) of the monolayers, and permeability of hydrophilic compounds were measured under these conditions. Permeability of these compounds were also measured in Calu-3 cells, which have tighter junctions than Caco-2 cells. Calcium depletion loosened the tight junctions of Caco-2 cells to varying levels as measured by the decrease in TEER values of the monolayers. While the absolute permeability of all the model compounds increased as the tight junctions were loosened, the ratios of their permeability relative to mannitol permeability were similar. The permeability of these compounds in the tighter Calu-3 cells were also found to be similar to each other. Altering the tight junctions of Caco-2 cells to obtain leakier cell monolayers, or using a cell line with tighter junctions like Calu-3 cells, did not improve differentiation between well absorbed and poorly absorbed hydrophilic drugs. Mere manipulation of the tight junctions to increase or decrease transepithelial electrical resistance does not appear to be a viable approach to predict human absorption for hydrophilic compounds that are primarily absorbed via the paracellular pathway.


Assuntos
Permeabilidade da Membrana Celular , Células Epiteliais/metabolismo , Mucosa Bucal/metabolismo , Preparações Farmacêuticas/metabolismo , Junções Íntimas/metabolismo , Absorção , Células CACO-2 , Cálcio/metabolismo , Células Epiteliais/fisiologia , Humanos , Preparações Farmacêuticas/química , Junções Íntimas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA