Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 40(5): 1389-1404, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33492680

RESUMO

Herbicide drift may cause adverse effects on natural and seminatural plant communities, and it has been debated whether the current ecological risk assessments are adequate to protect nontarget terrestrial plant species. In the present study, 9 nontarget terrestrial plant species with different lifespans (3 annual/6 perennial) belonging to 6 different plant families were exposed to 4 herbicides with different modes of action at the vegetative (6-8 leaf) and reproductive (bud) stages separately. The plant tests were conducted under controlled conditions in 2 greenhouses, 1 located in Denmark and 1 in Canada. For both growth stages, effects were recorded on vegetative (above-ground biomass 3 wk after treatment) and reproductive endpoints (number and germinability of seeds). In most cases, responses following exposure at the juvenile stage were greater than responses following exposure at the reproductive stage. For the combinations of herbicides and plant species included in the present study, we found that the sensitivities of vegetative and reproductive endpoints were equal, or else vegetative endpoints were more sensitive than reproductive endpoints. We also found that annual species were more sensitive than perennial species. The overall conclusions cover many different response patterns, and it is evident that some effects may not be found in the currently used standard tests. Generally, more pronounced effects were obtained in Denmark compared with Canada, highlighting the fact that even under standardized test conditions and following common guidelines, several uncontrollable factors can still induce variable results. Environ Toxicol Chem 2021;40:1389-1404. © 2021 SETAC.


Assuntos
Herbicidas , Biomassa , Herbicidas/análise , Herbicidas/toxicidade , Estágios do Ciclo de Vida , Plantas , Sementes/química
2.
Environ Toxicol Chem ; 39(6): 1244-1256, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32170767

RESUMO

Herbicides have been shown to reduce flower production and to delay flowering, with results varying among herbicides and tested plant species. We investigated the effects of herbicides on flowering in an extensive greenhouse study conducted in Canada and Denmark. The effects of low doses of 5 different herbicides (bromoxynil, ioxynil + bromoxynil, metsulfuron-methyl, clopyralid, and glyphosate), simulating realistic drift scenarios (1 and 5% recommended field rates), on plant flowering were examined using 9 wild plant species exposed at either the seedling (6- to 8-leaf) or flower bud stage. Following herbicide exposure, initial flowering date as well as flower production over time were recorded over the growing period. The effect of herbicides on cumulative flower numbers and flowering time were modeled using Gompertz growth models. Significant delays to peak flowering and/or reductions in flower production were observed in at least one plant species for all tested herbicides, with glyphosate often exhibiting the greatest negative effects, that is, plant death. Except for ioxynil + bromoxynil, there was no clear evidence of either the seedling or the flower bud stage being more sensitive. Overall, 58% of all species × life stage × herbicide treatments resulted in either a statistically significant or a strong decline in flower production with herbicide application rates up to 5% of recommended field rates, whereas significant or strong delays in peak flowering were also detected but were slightly less common. Effects at 1% label rates were minimal. Simultaneous delays to peak flowering and reductions in total flower production occurred in approximately 25% of all cases, indicating that herbicide application rates simulating realistic drift scenarios would likely have negative effects on wild floral communities. Environ Toxicol Chem 2020;39:1244-1256. © 2020 SETAC.


Assuntos
Flores/efeitos dos fármacos , Herbicidas/toxicidade , Magnoliopsida/efeitos dos fármacos , Plântula/efeitos dos fármacos , Canadá , Dinamarca , Flores/crescimento & desenvolvimento , Magnoliopsida/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
3.
Front Plant Sci ; 11: 608845, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384707

RESUMO

Annual ryegrass species (Lolium spp.) infest cereal crops worldwide. Ryegrass populations with multiple resistance to the acetyl coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS) inhibitors are an increasing problem in several European countries. We investigated the resistance pattern and level of resistance in ryegrass populations collected in Denmark, Greece and Italy and studied the diversity of mechanisms endowing resistance, both target-site and metabolism based. All populations showed high resistance indexes (RI) to the ALS inhibitors, iodosufuron-methyl-sodium + mesosulfuron-methyl (RI from 8 to 70), whereas the responses to the two ACCase inhibitors, clodinafop-propargyl and pinoxaden, differed. The Greek and Italian populations were moderately to highly resistant to clodinafop (RI > 8) and showed low to moderate resistance to pinoxaden (RI ranged from 3 to 13) except for one Italian population. In contrast, the Danish Lolium populations showed low to moderate resistance to clodinafop (RI ranged from 2 to 7) and only one population was resistant to pinoxaden. Different mutant ACCase alleles (Leu1781, Cys2027, Asn2041, Val2041, Gly2078, Arg2088, Ala2096) and ALS alleles (Gly122, Ala197, Gln197, Leu197, Ser197, Thr197, Val205, Asn376, Glu376, Leu574) endowing resistance were detected in the Greek and Italian populations. In several plants, no mutated ALS and ACCase alleles were found showing a great heterogeneity within and among the Greek and Italian populations. Conversely, no mutant ACCase alleles were identified in the four Danish populations and only one mutant ALS allele (Leu574) was detected in two Danish populations. The expression level of nitronate monooxygenase (NMO), glutathione S-transferase (GST) and cytochrome P450s (CYP72A1 and CYP72A2) varied broadly among populations and individual plants within the populations. Constitutive up-regulation of GST, CYP72A1 and CYP72A2 was detected in resistant plants respect to susceptible plants in one Danish and one Italian population. It appears that the mechanisms underlying resistance are rather complex and diversified among Lolium spp. populations from the three countries, coevolution of both target-site resistance and metabolic based herbicide resistance appears to be a common feature in Denmark and Italy. This must be considered and carefully evaluated in adopting resistance management strategies to control Lolium spp. in cereal crops.

4.
Environ Toxicol Chem ; 38(9): 2053-2064, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31145498

RESUMO

Plant competitive interactions influence the effect of herbicides, and the effect of competitive interactions on plant responses may be important to include in the ecological risk assessment of herbicides. In the present study the effect of competitive interactions and sublethal doses of 2 herbicides on plant species was investigated in competition experiments and fitted to empirical competition models. Two nontarget species commonly found in agroecosystems (Centaurea cyanus L. and Silene noctiflora L.) and 2 herbicides (glyphosate and metsulfuron methyl) were used in separate experiments. Plants were sprayed at the 6- to 8-leaf stage. Effects of herbicide treatments and plant density were modeled by generalization of a discrete hyperbolic competition model. The 10% effective dose (ED10) was calculated for C. cyanus. All experiments showed that as density increased, plants were negatively affected. Furthermore, in all cases, C. cyanus remained a better competitor than S. noctiflora. Nevertheless, the density of S. noctiflora (competitor) was an influential element in determining the ED10 of C. cyanus measured at the mature stage. With herbicide exposure, the competitive interactions were further altered; C. cyanus was less affected by glyphosate when S. noctiflora increased to high density. In contrast, at the young stage, conspecific density was important in determining the sensitivity of C. cyanus to metsulfuron methyl, whereas the density of the competitor S. noctiflora had a limited influence. Overall, the results demonstrate the importance of integrating the effect of herbicide and species interactions measured at the reproductive stage into the ecological risk assessments of pesticides. Environ Toxicol Chem 2019;38:2053-2064. © 2019 SETAC.


Assuntos
Centaurea/efeitos dos fármacos , Herbicidas/toxicidade , Silene/efeitos dos fármacos , Sulfonatos de Arila/toxicidade , Biomassa , Centaurea/crescimento & desenvolvimento , Ecossistema , Glicina/análogos & derivados , Glicina/toxicidade , Silene/crescimento & desenvolvimento , Glifosato
5.
Front Plant Sci ; 8: 2011, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29234334

RESUMO

Attention should be devoted to weeds evolving herbicide resistance with non-target-site resistance (NTSR) mechanism due to their unpredictable resistance patterns. Quantification of fitness cost can be used in NTSR management strategies to determine the long-term fate of resistant plants in weed populations. To our knowledge, this is the first report evaluating potential fecundity and vegetative fitness of a NTSR black-grass (Alopecurus myosuroides Huds), the most important herbicide resistant weed in Europe, with controlled genetic background. The susceptible (S) and NTSR sub-populations were identified and isolated from a fenoxaprop-P-ethyl resistant population by a plant cloning technique. Using a target-neighborhood design, competitive responses of S and NTSR black-grass sub-populations to increasing density of winter wheat were quantified for 2 years in greenhouse and 1 year in field. Fitness traits including potential seed production, vegetative biomass and tiller number of both sub-populations significantly decreased with increasing density of winter wheat. More importantly, no statistically significant differences were found in fitness traits between S and NTSR sub-populations either grown alone (no competition) or in competition with winter wheat. According to the results, the NTSR black-grass is probably to persist in field even in the cessation of fenoxaprop-P-ethyl. So, effective herbicide resistant management strategies are strongly suggested to prevent and stop the spread of the NTSR black-grass, otherwise NTSR loci conferring resistance to a range of herbicides in black-grass will persist in the gene pool even in the absence of herbicide application. Consequently, herbicide as an effective tool for control of black-grass will gradually be lost in fields infested by NTSR black-grass.

6.
Front Plant Sci ; 8: 1660, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28993787

RESUMO

Herbicide resistance is an example of plant evolution caused by an increased reliance on herbicides with few sites of action to manage weed populations. This micro-evolutionary process depends on fitness, therefore the assessment of fitness differences between susceptible and resistant populations are pivotal to establish management strategies. Loose silky bentgrass (Apera spica-venti) is a serious weed in Eastern, Northern, and Central Europe with an increasing number of herbicide resistant populations. This study examined the fitness and growth characteristics of an ALS resistant biotype. Fitness and growth characteristics were estimated by comparing seed germination, biomass, seed yield and time to key growth stages at four crop densities of winter wheat (0, 48, 96, and 192 plants m-2) in a target-neighborhood design. The resistant population germinated 9-20 growing degree days (GDD) earlier than the susceptible population at 10, 16, and 22°C. No differences were observed between resistant and susceptible populations in tiller number, biomass, time to stem elongation, time to first visible inflorescence and seed production. The resistant population reached the inflorescence emergence and flowering stages in less time by 383 and 196 GDD, respectively, at a crop density of 96 winter wheat plants m-2 with no differences registered at other densities. This study did not observe a fitness cost to herbicide resistance, as often hypothesized. Inversely, a correlation between non-target site resistance (NTSR), earlier germination and earlier flowering time which could be interpreted as fitness benefits as these plant characteristics could be exploited by modifying the timing and site of action of herbicide application to better control ALS NTSR populations of A. spica-venti.

7.
BMC Genomics ; 18(1): 128, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28166737

RESUMO

BACKGROUND: Loose silky bentgrass (Apera spica-venti) is an important weed in Europe with a recent increase in herbicide resistance cases. The lack of genetic information about this noxious weed limits its biological understanding such as growth, reproduction, genetic variation, molecular ecology and metabolic herbicide resistance. This study produced a reference transcriptome for A. spica-venti from different tissues (leaf, root, stem) and various growth stages (seed at phenological stages 05, 07, 08, 09). The de novo assembly was performed on individual and combined dataset followed by functional annotations. Individual transcripts and gene families involved in metabolic based herbicide resistance were identified. RESULTS: Eight separate transcriptome assemblies were performed and compared. The combined transcriptome assembly consists of 83,349 contigs with an N50 and average contig length of 762 and 658 bp, respectively. This dataset contains 74,724 transcripts consisting of total 54,846,111 bp. Among them 94% had a homologue to UniProtKB, 73% retrieved a GO mapping, and 50% were functionally annotated. Compared with other grass species, A. spica-venti has 26% proteins in common to Brachypodium distachyon, and 41% to Lolium spp. Glycosyltransferases had the highest number of transcripts in each tissue followed by the cytochrome P450s. The GSTF1 and CYP89A2 transcripts were recovered from the majority of tissues and aligned at a maximum of 66 and 30% to proven herbicide resistant allele from Alopecurus myosuroides and Lolium rigidum, respectively. CONCLUSIONS: De novo transcriptome assembly enabled the generation of the first reference transcriptome of A. spica-venti. This can serve as stepping stone for understanding the metabolic herbicide resistance as well as the general biology of this problematic weed. Furthermore, this large-scale sequence data is a valuable scientific resource for comparative transcriptome analysis for Poaceae grasses.


Assuntos
Perfilação da Expressão Gênica , Poaceae/crescimento & desenvolvimento , Poaceae/genética , Resistência a Herbicidas/genética , Anotação de Sequência Molecular , Poaceae/fisiologia , Especificidade da Espécie
8.
Front Plant Sci ; 7: 1160, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547209

RESUMO

Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of Lolium multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR) genes were also observed after herbicides exposure in the gene expression databases, indicating them as reliable markers. In order to get an overview of herbicidal resistance status of L. multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS) inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase) inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively, and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O. sativa and A. thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif is known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward toward a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management.

9.
J Environ Sci Health B ; 49(12): 897-908, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25310805

RESUMO

Biodiversity within European semi-natural biotopes in agro-ecosystem is declining, and herbicide drift from neighbouring fields is considered as an important factor for the decline. The aim of the present study was to investigate whether the growth and competitive interactions in a model system of two perennial grass species, Festuca ovina and Agrostis capillaris, are affected by sub-lethal doses of glyphosate in field margins. In a glasshouse experiment with ample nitrogen, the interspecific competitive interactions were found to be significantly affected by glyphosate; the competitive effect of F. ovina on A. capillaris increased and the competitive effect of A. capillaris on F. ovina decreased with increasing doses of glyphosate. Furthermore, the importance of interspecific competition increased with the glyphosate dose. The results of the study of competitive interactions are in agreement with the observed plant community dynamics at the field site where F. ovina was found to be more dominant in plots treated with a relatively high dose of glyphosate. Importantly, the effects of glyphosate on the plant community dynamics critically depended on the effect of glyphosate on the plant competitive interactions. The study concludes that the current practice in the environmental risk assessment of non-target effects of herbicides, where single species are tested in the greenhouse, may be inadequate for assessing the effect of herbicides in semi-natural plant communities. The presented methods can be used for assessing the importance of competitive interactions for the sensitivity of non-target plants to herbicides in risk assessment.


Assuntos
Agrostis/efeitos dos fármacos , Festuca/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/farmacologia , Agrostis/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Ecossistema , Europa (Continente) , Festuca/crescimento & desenvolvimento , Glicina/administração & dosagem , Glicina/farmacologia , Pradaria , Herbicidas/administração & dosagem , Modelos Biológicos , Glifosato
10.
PLoS One ; 8(4): e60992, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593371

RESUMO

The ecological success of a plant species is typically described by the observed change in plant abundance or cover, but in order to more fully understand the fundamental plant ecological processes, it is necessary to inspect the underlying processes of survival and colonization and how they are affected by environmental conditions. A general ecological hypothesis on the effect of environmental gradients on demographic parameters is proposed and tested. The hypothesis is that decreasing fitness or competitive ability along an environmental gradient is associated with an increasing importance of survival for regulating the abundance of the species. The tested hypothesis is related to both the stress gradient hypothesis and whether the importance of competition increases along productivity gradients. The combined effect of nitrogen and glyphosate on the survival and colonization probability of two perennial grass species, Festuca ovina and Agrostis capillaris, which are known to differ in their responses to both glyphosate and nitrogen treatments, is calculated using pin-point cover data in permanent frames. We found that the relative importance of survival increased with the level of glyphosate for the glyphosate sensitive A. capillaris and decreased for the glyphosate tolerant F. ovina. Likewise, increasing levels of nitrogen increased the importance of survival for the relative nitrophobic F. ovina. Consequently, the proposed hypothesis was corroborated in this specific study. The proposed method will enable predictions of the effects of agricultural practices on community dynamics in a relatively simple setup eliminating the need to quantify all the interaction among the species in the plant community. The method will be immediately useful for the regulation of non-cultivated buffer strips between agricultural fields and semi-natural and natural biotopes such as hedgerows and waterways.


Assuntos
Agrostis/crescimento & desenvolvimento , Ecossistema , Festuca/crescimento & desenvolvimento , Modelos Biológicos , Agricultura , Agrostis/metabolismo , Dinamarca , Festuca/metabolismo , Aptidão Genética/fisiologia , Glicina/análogos & derivados , Glicina/metabolismo , Nitrogênio/metabolismo , Dinâmica Populacional , Especificidade da Espécie , Glifosato
11.
Nat Prod Commun ; 4(2): 199-208, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19370922

RESUMO

In the present study, a range of benzoxazinoid compounds and phenolic acids, all known to be allelochemicals of rye, were identified and quantified in 13 rye cultivars grown at three different localities. Plant samples were collected in the spring at the time when an autumn-sown rye cover crop would be incorporated into the soil. Significant variations in content among shoots and roots were seen for all of the secondary metabolites, with non-methoxy-substituted benzoxazinoids (BX) dominating the shoots, whereas comparable levels were found in the concentrations of BX and methoxy-substituted benzoxazinoids (MBX) in the roots. This distribution of compounds may indicate different biosynthetic pathways and/or different mechanisms of action of these compounds. Concentrations not only depended on plant part, but also on the geographical location--with differences in contents of up to a factor of 5. These differences can probably be attributed to differences in growing conditions. The variation among cultivars was similar to that among geographical localities, with differences within localities of up to a factor of 7 in the shoots and a factor of 14 in the roots. In roots, the contents of the four phenolic acids and the benzoxazinoid 6-methoxybenzoxazolin-2-one (MBOA) were correlated. In shoots, the contents of the two benzoic acids were correlated with each other, whereas the two cinnamic acids were correlated with MBOA and several other benzoxazinoids. The lack of correlation between MBOA and all other benzoxazinoids in the roots of rye might indicate that a hitherto unknown synthetic pathway exists for MBOA. The genes responsible for the synthesis of some of the benzoxazinoids have never been identified, and further gene expression studies are required to assess the observed correlation between the concentration of these compounds and other benzoxazinoids for which the responsible genes are known. The present study revealed a potential for breeding rye cultivars with a high content of biologically active secondary metabolites. However, growing conditions significantly influenced the level of these compounds.


Assuntos
Benzoxazinas/química , Hidroxibenzoatos/química , Secale/química , Estrutura Molecular , Raízes de Plantas/química , Brotos de Planta/química , Secale/classificação
12.
Environ Toxicol Chem ; 27(7): 1621-32, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18271647

RESUMO

From a theoretical point of view, it has often been argued that the model of independent action (IA) is the most correct reference model to use for predicting the joint effect of mixtures of chemicals with different molecular target sites. The theory of IA, however, relies on a number of assumptions that are rarely fulfilled in practice. It has even been argued that, theoretically, the concentration addition (CA) model could be just as correct. In the present study, we tested the accuracy of both IA and CA in describing binary dose-response surfaces of chemicals with different molecular targets using statistical software. We compared the two models to determine which best describes data for 158 data sets. The data sets represented 98 different mixtures of, primarily, pesticides and pharmaceuticals tested on one or several of seven test systems containing one of the following: Vibrio fischeri, activated sludge microorganisms, Daphnia magna, Pseudokirchneriella subcapitata, Lemna minor, Tripleurospermum inodorum, or Stellaria media. The analyses showed that approximately 20% of the mixtures were adequately predicted only by IA, 10% were adequately predicted only by CA, and both models could predict the outcome of another 20% of the experiment. Half of the experiments could not be correctly described with either of the two models. When quantifying the maximal difference between modeled synergy or antagonism and the reference model predictions at a 50% effect concentration, neither of the models proved significantly better than the other. Thus, neither model can be selected over the other on the basis of accuracy alone.


Assuntos
Modelos Biológicos , Compostos Orgânicos/toxicidade , Praguicidas/toxicidade , Testes de Toxicidade/métodos , Aliivibrio fischeri/efeitos dos fármacos , Animais , Araceae/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Besouros/efeitos dos fármacos , Simulação por Computador , Daphnia/efeitos dos fármacos , Bases de Dados Factuais/estatística & dados numéricos , Relação Dose-Resposta a Droga , Humanos , Compostos Orgânicos/análise , Praguicidas/análise , Stellaria/efeitos dos fármacos , Testes de Toxicidade/normas
13.
Pest Manag Sci ; 63(3): 282-95, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17304633

RESUMO

Risk assessment of herbicides towards non-target plants in Europe is currently based solely on tests on algae and floating aquatic plants of Lemna sp. Effects on terrestrial non-target species is not systematically addressed. The purpose of the present study was to compare combination effects of herbicide mixtures across aquatic and terrestrial test systems, and to test whether results obtained in the traditional aquatic test systems can be extrapolated to the terrestrial environment. This was done by evaluating ten binary mixtures of nine herbicides representing the seven most commonly used molecular target sites for controlling broadleaved weeds. Data were evaluated statistically in relation to the concentration addition model, and for selected concentrations to the independent action model. The mixtures were tested on the terrestrial species Tripleurospermum inodorum (L.) Schultz-Bip. (Scentless Mayweed) and Stellaria media (L.) Vill. (Common Chickweed), and on the aquatic species Lemna minor L. (Lesser duckweed) and the alga Pseudokirchneriella subcapitata (Korschikov) Hindak. For the two mixtures of herbicides with the same molecular site of action, the joint effect was additive. For the eight mixtures of herbicides with different sites of action, two of the mixtures were consistently antagonistic across species, while for the remaining six mixtures the joint effect depended on the species tested. This dependence was, however, not systematic, in the sense that none of the species or test systems (terrestrial versus aquatic) had a significantly higher probability of showing synergistic or antagonistic joint effects than others. Synergistic interactions were not observed, but approximately 70% of the mixtures of herbicides with different sites of action showed significant antagonism. Hence, the concentration addition model can be used to estimate worst-case effects of mixtures of herbicides on both terrestrial and aquatic species. Comparing the sensitivity of the species to a 10% spray drift event showed that the terrestrial species were more vulnerable to all herbicides compared with the aquatic species, emphasising the importance of including terrestrial non-target plants in herbicide risk assessment.


Assuntos
Eucariotos/efeitos dos fármacos , Herbicidas/toxicidade , Plantas/efeitos dos fármacos , Araceae/efeitos dos fármacos , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Medição de Risco , Especificidade da Espécie , Stellaria/efeitos dos fármacos , Testes de Toxicidade , Tripleurospermum/efeitos dos fármacos
14.
Pest Manag Sci ; 62(6): 515-21, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16628541

RESUMO

A new, easy, rapid and relatively inexpensive method using microscopy has been developed for the detection of herbicide effects in leaves of grass weed species displaying no visual signs of damage. The method has potential to be used as a tool to indicate future death of grass species due to herbicide exposure by observing phytochemical effects, i.e. early-warning effects. In the present study, Apera spica-venti (L.) Beauv., Bromus hordeaceus L., Alopecurus myosuroides Huds., Lolium perenne L. and Poa annua L. were exposed to lethal rates of four herbicides with different mode of action. The herbicides investigated were the thiocarbamate: prosulfocarb, the sulfonylurea: iodosulfuron, the aryloxyphenoxypropionate: fenoxaprop-P-ethyl and the organophosphate glyphosate. Autofluorescence of leaves was studied under a microscope using ultraviolet and blue light. The fluorescence of leaves treated to enhance flavonoids was also examined. To confirm the results, microspectrofluorometry was performed. Effects indicating future death of the grasses were observed in visually healthy leaves following treatment with prosulfocarb, glyphosate and iodosulfuron. No changes were detected following treatment with fenoxaprop-P-ethyl. After exposure to glyphosate or iodosulfuron, changes in the content of flavonoids and other compounds with a conjugation system and rigid structure and a decrease in the content of chlorophyll were detected in the leaves. Prosulfocarb treatment resulted in changes in the content of flavonoids and other compounds with a conjugation system and rigid structure and an increase in the content of chlorophyll in the leaves. The results obtained from microspectrofluorometry indicated that exposure to prosulfocarb caused a reduction in the flavonoids quercetin, naringenin and/or naringin.


Assuntos
Herbicidas/farmacologia , Microscopia de Fluorescência/métodos , Poaceae/efeitos dos fármacos , Resistência a Medicamentos , Folhas de Planta/efeitos dos fármacos , Espectrometria de Fluorescência
15.
J Agric Food Chem ; 54(4): 1023-30, 2006 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-16478212

RESUMO

Three varieties of winter wheat (Triticum aestivum) were grown in both conventional and organic farming systems. The contents of the benzoxazinone derivatives 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), 2-beta-d-glucopyranosyloxy-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA-Glc), 6-methoxybenzoxazolin-2-one (MBOA), 2-hydroxy-7-methoxy-1,4-benzoxazin-3-one (HMBOA), benzoxazolin-2-one (BOA), and 2-hydroxy-1,4-benzoxazin-3-one (HBOA) were analyzed at five growth stages (BBCH 9-10, 12, 21, 31, and 53). Major differences were found between the varieties, with Stakado exhibiting the highest contents. In contrast, only minor and erratic differences were found between the two farming systems, suggesting that the inherent differences in the content of benzoxazinone derivatives of the varieties were not significantly affected by the use of pesticides and synthetic fertilizers. The concentration of benzoxazinone derivatives in the foliage was considerably higher at the early growth stages than later in the growing season, with DIMBOA being the most abundant of the benzoxazinone derivatives. An increase in the concentration was observed in early spring compared to late autumn, suggesting that plants synthesized benzoxazinone derivatives at the commencement of growth in early spring. The concentrations in the roots were considerably lower than in the foliage at the early growth stages but remained relatively constant over time, resulting in a higher concentration than in the foliage at the late growth stages. The results are discussed in relation to previous findings that predominantly originate from experiments done under controlled conditions in either growth cabinets or greenhouses.


Assuntos
Oxazinas/análise , Triticum/química , Triticum/crescimento & desenvolvimento , Benzoxazinas , Dinamarca , Folhas de Planta/química , Raízes de Plantas/química , Estações do Ano
16.
J Agric Food Chem ; 54(4): 1049-57, 2006 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-16478216

RESUMO

The joint action of binary and ternary mixtures of benzoxazinone derivatives and phenolic acids was studied using the additive dose model (ADM) as reference model. The activity of fixed-ratio mixtures of phenolic acids [ferulic acid (FA), p-coumaric acid (CA), vanillic acid (VA), and p-hydroxybenzoic acid (HBA)] and benzoxazinone derivatives [2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), 6-methoxybenzoxazolin-2-one (MBOA), benzoxazolin-2-one (BOA), 2-aminophenol (AP), and N-(2-hydroxyphenyl)acetamide (HPAA)] on Lolium perenne and Myosotis arvensis root growth was assessed in Petri dishes. Root length was recorded 6 days after seeding, and EC(50) and EC(90) values were estimated using nonlinear regression analyses. The benzoxazinone derivatives were found to be more phytotoxic than the phenolic acids, particularly on M. arvensis. Binary mixtures of phenolic acids responded predominantly additively on both plant species. Deviations from additivity were species-specific with antagonistic responses on L. perenne and synergistic responses on M. arvensis. Similarly, binary mixtures of benzoxazinone derivatives also followed the ADM, although synergistic responses were observed for BOA + AP and BOA + HPAA. Binary and ternary mixtures of benzoxazinone derivatives and phenolic acids responded primarily antagonistically; however, a significant synergistic performance was observed with DIMBOA + FA and DIMBOA + VA on L. perenne. These results do not support the assumption that allelopathic effects of wheat can be attributed to synergistic effects of otherwise weakly active allelopathic compounds, and it is suggested that future research be directed toward identifying and studying the effects of other potential allelochemicals including the degradation products of the most abundant wheat allelochemicals.


Assuntos
Ácidos Carbocíclicos/farmacologia , Benzoxazóis/farmacologia , Lolium/efeitos dos fármacos , Magnoliopsida/efeitos dos fármacos , Oxazinas/farmacologia , Benzoxazinas , Ácidos Cumáricos/farmacologia , Sinergismo Farmacológico , Herbicidas/farmacologia , Parabenos/farmacologia , Feromônios/farmacologia , Propionatos , Ácido Vanílico
17.
J Agric Food Chem ; 54(4): 1058-63, 2006 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-16478217

RESUMO

The hydroxamic acid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and the benzoxazolinones benzoxazolin-2-one (BOA) and 6-methoxybenzoxazolin-2-one (MBOA) have been identified as important allelochemicals in wheat. This study examines the possibility of exploiting the allelopathic properties of wheat as a weed control strategy by cultivating wheat as a precrop and incorporating plant residues into the soil before the next crop is sown. Different wheat varieties were cultivated in field plots during two seasons in both conventional and organic farming systems. Plants were sampled at various growth stages, and their contents of DIMBOA, MBOA, and BOA were determined by chemical analyses. The wheat samples were incorporated into soil, and the effect on germination and growth of 12 different weed species was examined in pot experiments under controlled conditions. In some cases significant effects were obtained, but the results were inconsistent and the effects were not correlated to the content of DIMBOA, MBOA, and BOA in the incorporated wheat plants. ED50 doses of the pure compounds were estimated in dose-response experiments in Petri dishes, and these turned out to be much higher than the predicted maximum concentrations of DIMBOA, MBOA, and BOA in the soil water following incorporation. The study shows that a prerequisite for exploiting the incorporation of wheat residues as a weed control strategy is the development of wheat varieties with an increased content of allelochemicals.


Assuntos
Herbicidas/farmacologia , Solo/análise , Triticum/química , Benzoxazinas , Benzoxazóis/análise , Benzoxazóis/farmacologia , Relação Dose-Resposta a Droga , Germinação/efeitos dos fármacos , Oxazinas/análise , Oxazinas/farmacologia , Feromônios/farmacologia , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
18.
Dose Response ; 5(2): 150-62, 2006 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18648603

RESUMO

This paper evaluated the frequency, magnitude and dose/concentration range of hormesis in four species: The aquatic plant Lemna minor, the micro-alga Pseudokirchneriella subcapitata and the two terrestrial plants Tripleurospermum inodorum and Stellaria media exposed to nine herbicides and one fungicide and binary mixtures thereof. In total 687 dose-response curves were included in the database. The study showed that both the frequency and the magnitude of the hormetic response depended on the endpoint being measured. Dry weight at harvest showed a higher frequency and a larger hormetic response compared to relative growth rates. Evaluating hormesis for relative growth rates for all species showed that 25% to 76% of the curves for each species had treatments above 105% of the control. Fitting the data with a dose-response model including a parameter for hormesis showed that the average growth increase ranged from 9+/-1% to 16+/-16% of the control growth rate, while if measured on a dry weight basis the response increase was 38+/-13% and 43+/-23% for the two terrestrial species. Hormesis was found in >70% of the curves with the herbicides glyphosate and metsulfuron-methyl, and in >50% of the curves for acifluorfen and terbuthylazine. The concentration ranges of the hormetic part of the dose-response curves corresponded well with literature values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA