Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Genet Metab Rep ; 39: 101066, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38425868

RESUMO

Mitochondrial malate dehydrogenase 2 (MDH2) is crucial to cellular energy generation through direct participation in the tricarboxylic acid (TCA) cycle and the malate aspartate shuttle (MAS). Inherited MDH2 deficiency is an ultra-rare metabolic disease caused by bi-allelic pathogenic variants in the MDH2 gene, resulting in early-onset encephalopathy, psychomotor delay, muscular hypotonia and frequent seizures. Currently, there is no cure for this devastating disease. We recently reported symptomatic improvement of a three-year-old girl with MDH2 deficiency following treatment with the triglyceride triheptanoin. Here, we aimed to better characterize this disease and improve our understanding of the potential utility of triheptanoin treatment. Using fibroblasts derived from this patient, we generated induced pluripotent stem cells (hiPSCs) and differentiated them into hepatocytes (hiPSC-Heps). Characterization of patient-derived hiPSCs and hiPSC-Heps revealed significantly reduced MDH2 protein expression. Untargeted proteotyping of hiPSC-Heps revealed global dysregulation of mitochondrial proteins, including upregulation of TCA cycle and fatty acid oxidation enzymes. Metabolomic profiling confirmed TCA cycle and MAS dysregulation, and demonstrated normalization of malate, fumarate and aspartate following treatment with the triheptanoin components glycerol and heptanoate. Taken together, our results provide the first patient-derived hiPSC-Hep-based model of MDH2 deficiency, confirm altered TCA cycle function, and provide further evidence for the implementation of triheptanoin therapy for this ultra-rare disease. Synopsis: This study reveals altered expression of mitochondrial pathways including the tricarboxylic acid cycle and changes in metabolite profiles in malate dehydrogenase 2 deficiency and provides the molecular basis for triheptanoin treatment in this ultra-rare disease.

2.
JIMD Rep ; 65(2): 116-123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444580

RESUMO

Mucopolysaccharidoses (MPS) screening is tedious and still performed by analysis of total glycosaminoglycans (GAG) using 1,9-dimethylmethylene blue (DMB) photometric assay, although false positive and negative tests have been reported. Analysis of differentiated GAGs have been pursued classically by gel electrophoresis or more recently by quantitative LC-MS assays. Secondary elevations of GAGs have been reported in urinary tract infections (UTI). In this manuscript, we describe the diagnostic accuracy of urinary GAG measurements by LC-MS for MPS typing in 68 untreated MPS and mucolipidosis (ML) patients, 183 controls and 153 UTI samples. We report age-dependent reference values and cut-offs for chondroitin sulfate (CS), dermatan sulfate (DS), heparan sulfate (HS) and keratan sulfate (KS) and specific GAG ratios. The use of HS/DS ratio in combination to GAG concentrations normalized to creatinine improves the diagnostic accuracy in MPS type I, II, VI and VII. In total 15 samples classified to the wrong MPS type could be correctly assigned using HS/DS ratio. Increased KS/HS ratio in addition to increased KS improves discrimination of MPS type IV by excluding false positives. Some samples of UTI patients showed elevation of specific GAGs, mainly CS, KS and KS/HS ratio and could be misclassified as MPS type IV. Finally, DMB photometric assay performed in MPS and ML samples reveal four false negative tests (sensitivity of 94%). In conclusion, specific GAG ratios in complement to quantitative GAG values obtained by LC-MS enhance discrimination of MPS types. Exclusion of patients with UTI improve diagnostic accuracy in MPS IV but not in other types.

3.
Cells ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391907

RESUMO

Ketone bodies (KBs) are energy-efficient substrates utilized by the heart depending on its metabolic demand and substrate availability. Levels of circulating KBs have been shown to be elevated in acute and chronic cardiovascular disease and are associated with severity of disease in patients with heart failure and functional outcome after myocardial infarction. To investigate whether this pattern similarly applies to patients undergoing cardiac surgery involving cardiopulmonary bypass (CPB), we analysed prospectively collected pre- and postoperative blood samples from 192 cardiac surgery patients and compared levels and perioperative changes in total KBs with Troponin T as a marker of myocardial cell injury. We explored the association of patient characteristics and comorbidities for each of the two biomarkers separately and comparatively. Median levels of KBs decreased significantly over the perioperative period and inversely correlated with changes observed for Troponin T. Associations of patient characteristics with ketone body perioperative course showed notable differences compared to Troponin T, possibly highlighting factors acting as a "driver" for the change in the respective biomarker. We found an inverse correlation between perioperative change in ketone body levels and changes in troponin, indicating a marked decrease in ketone body concentrations in patients exhibiting greater myocardial cell injury. Further investigations aimed at better understanding the role of KBs on perioperative changes are warranted.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Traumatismos Cardíacos , Humanos , Ponte Cardiopulmonar/efeitos adversos , Troponina T , Corpos Cetônicos , Troponina , Biomarcadores
4.
J Inherit Metab Dis ; 46(1): 129-142, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36225138

RESUMO

Deficiency of antiquitin (α-aminoadipic semialdehyde dehydrogenase), an enzyme involved in lysine degradation and encoded by ALDH7A1, is the major cause of vitamin B6 -dependent epilepsy (PDE-ALDH7A1). Despite seizure control with high dose pyridoxine (PN), developmental delay still occurs in approximately 70% of patients. We aimed to investigate metabolic perturbations due to possible previously unidentified roles of antiquitin, which may contribute to developmental delay, as well as metabolic effects of high dose pyridoxine supplementation reflecting the high doses used for seizure control in patients with PDE-ALDH7A1. Untargeted metabolomics by high resolution mass spectrometry (HRMS) was used to analyze plasma of patients with PDE-ALDH7A1 and two independently generated lines of cultured ReNcell CX human neuronal progenitor cells (NPCs) with CRISPR/Cas mediated antiquitin deficiency. Accumulation of lysine pathway metabolites in antiquitin-deficient NPCs and western-blot analysis confirmed knockdown of ALDH7A1. Metabolomics analysis of antiquitin-deficient NPCs in conditions of lysine restriction and PN supplementation identified changes in metabolites related to the transmethylation and transsulfuration pathways and osmolytes, indicating a possible unrecognized role of antiquitin outside the lysine degradation pathway. Analysis of plasma samples of PN treated patients with PDE-ALDH7A1 and antiquitin-deficient NPCs cultured in conditions comparable to the patient plasma samples demonstrated perturbation of metabolites of the gamma-glutamyl cycle, suggesting potential oxidative stress-related effects in PN-treated patients with PDE-ALDH7A1. We postulate that a model of human NPCs with CRISPR/Cas mediated antiquitin deficiency is well suited to characterize previously unreported roles of antiquitin, relevant to this most prevalent form of pyridoxine-dependent epilepsy.


Assuntos
Epilepsia , Piridoxina , Humanos , Piridoxina/uso terapêutico , Lisina/metabolismo , Aldeído Desidrogenase , Epilepsia/metabolismo , Convulsões , Metabolômica
5.
Genes (Basel) ; 13(10)2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36292732

RESUMO

A 3-year-old, male neutered Cavalier King Charles Spaniel (CKCS) presented with complex focal seizures and prolonged lethargy. The aim of the study was to investigate the clinical signs, metabolic changes and underlying genetic defect. Blood and urine organic acid analysis revealed increased medium-chain fatty acids and together with the clinical findings suggested a diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. We sequenced the genome of the affected dog and compared the data to 923 control genomes of different dog breeds. The ACADM gene encoding MCAD was considered the top functional candidate gene. The genetic analysis revealed a single homozygous private protein-changing variant in ACADM in the affected dog. This variant, XM_038541645.1:c.444_445delinsGTTAATTCTCAATATTGTCTAAGAATTATG, introduces a premature stop codon and is predicted to result in truncation of ~63% of the wild type MCAD open reading frame, XP_038397573.1:p.(Thr150Ilefs*6). Targeted genotyping of the variant in 162 additional CKCS revealed a variant allele frequency of 23.5% and twelve additional homozygous mutant dogs. The acylcarnitine C8/C12 ratio was elevated ~43.3 fold in homozygous mutant dogs as compared to homozygous wild type dogs. Based on available clinical and biochemical data together with current knowledge in humans, we propose the ACADM frameshift variant as causative variant for the MCAD deficiency with likely contribution to the neurological phenotype in the index case. Testing the CKCS breeding population for the identified ACADM variant is recommended to prevent the unintentional breeding of dogs with MCAD deficiency. Further prospective studies are warranted to assess the clinical consequences of this enzyme defect.


Assuntos
Códon sem Sentido , Erros Inatos do Metabolismo Lipídico , Cães , Masculino , Humanos , Animais , Pré-Escolar , Acil-CoA Desidrogenase/genética , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/veterinária , Ácidos Graxos
6.
J Inherit Metab Dis ; 45(5): 926-936, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35560233

RESUMO

External quality assurance (EQA) is crucial to monitor and improve the quality of biochemical genetic testing. ERNDIM (www.erndim.org), established in 1994, aims at reliable and standardized procedures for diagnosis, treatment and monitoring of inherited metabolic disease (IMD) by providing EQA schemes and educational activities. Currently, ERNDIM provides 16 different EQA schemes including quantitative schemes for various metabolite groups, and interpretive schemes such as diagnostic proficiency testing (DPT). DPT schemes focus on the ability of laboratories to correctly identify and interpret abnormalities in authentic urine samples across a wide range of IMDs. In the DPT schemes, six samples each year are distributed together with clinical information. Laboratories choose and perform the tests needed to reach a diagnosis. Data were collected on 345 samples, distributed to up to 105 laboratories worldwide. Diagnostic proficiency (the % of total points possible for all participating laboratories within a scheme for analysis and interpretation) ranged widely: amino acid disorders (n = 20), range 33%-100%, mean 84%; organic acid disorders (n = 35), range 14%-100%, mean 84%; lysosomal storage disorders (n = 13), range 20%-97%, mean 73%; purine/pyrimidine disorders (n = 9), range 37%-100%, mean 70%; miscellaneous disorders (n = 8), range 17%-100%, mean 65%; no IMD, range 65%-95%, mean 85%. When a sample with the same disorder was distributed in a subsequent survey, performance improved in 75 cases with no improvement seen in 32, suggesting overall improvement of performance. ERNDIM diagnostic proficiency testing is a valuable activity which can help to assess laboratory performance, identify methodological/technical challenges, be informative during quality audits and contribute to a better clinical appreciation of diagnostic uncertainty.


Assuntos
Doenças por Armazenamento dos Lisossomos , Doenças Metabólicas , Técnicas e Procedimentos Diagnósticos , Humanos , Laboratórios , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/genética , Doenças Metabólicas/urina
7.
Mol Genet Metab Rep ; 29: 100827, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900597

RESUMO

BACKGROUND: Atypical myopathy (AM), an acquired multiple acyl-CoA dehydrogenase deficiency (MADD) in horses, induce changes in mitochondrial metabolism. Only few veterinary laboratories offer diagnostic testing for this disease. Inborn and acquired MADD exist in humans, therefore determination of organic acids (OA) in urine and acylcarnitines (AC) in blood by assays available in medical laboratories can serve as AM diagnostics. The evolution of OA and AC profiles in surviving horses is unreported. METHODS: AC profiles using electrospray ionization tandem mass spectrometry (ESI-MS/MS) and OA in urine using gas chromatography mass spectrometry (GC-MS) were determined in dried blot spots (DBS, n = 7) and urine samples (n = 5) of horses with AM (n = 7) at disease presentation and in longitudinal samples from 3/4 survivors and compared to DBS (n = 16) and urine samples (n = 7) from control horses using the Wilcoxon test. RESULTS: All short- (C2-C5) and medium-chain (C6-C12) AC in blood differed significantly (p < 0.008) between horses with AM and controls, except for C5:1 (p = 0.45) and C5OH + C4DC (p = 0.06). In AM survivors the AC concentrations decreased over time but were still partially elevated after 7 days. 14/62 (23%) of OA differed significantly between horses with AM and control horses. Concentrations of ethylmalonic acid, 2-hydroxyglutaric acid and the acylglycines (butyryl-, valeryl-, and hexanoylglycine) were highly elevated in the urine of all horses with AM at the day of disease presentation. In AM survivors, concentrations of those metabolites were initially lower and decreased during remission to approach normalization after 7 days. CONCLUSION: OA and AC profiling by specialized human medical laboratories was used to diagnose AM in horses. Elevation of specific metabolites were still evident several days after disease presentation, allowing diagnosis via analysis of samples from convalescent animals.

8.
JIMD Rep ; 58(1): 44-51, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33728246

RESUMO

Methylmalonyl-CoA mutase (MMUT) is part of the propionyl-CoA catabolic pathway, responsible for the breakdown of branched-chain amino acids, odd-chain fatty acids and the side-chain of cholesterol. Patients with deficient activity of MMUT suffer from isolated methylmalonic aciduria (MMAuria), frequently presenting in the newborn period with failure to thrive and metabolic crisis. Even well managed patients remain at risk for metabolic crises, of which one known trigger is acute illness, which may lead to poor feeding and vomiting, putting the patient in a catabolic state. This situation is believed to result in increased breakdown of propionyl-CoA catabolic pathway precursors, producing massively elevated levels of disease related metabolites, including methylmalonic acid and propionylcarnitine. Here, we used fasting of a hemizygous mouse model (Mut-ko/ki) of MMUT deficiency to study the role of induced catabolism on metabolite production. Although mice lost weight and displayed markers consistent with a catabolic state, contrary to expectation, we found strongly reduced levels of methylmalonic acid and propionylcarnitine in fasted conditions. Switching Mut-ko/ki mice from a high-protein diet to fasted conditions, or from a standard diet to a no-protein diet, resulted in similar reductions of methylmalonic acid and propionylcarnitine levels. These results suggest, in our mouse model at least, induction of a catabolic state on its own may not be sufficient to trigger elevated metabolite levels.

9.
Am J Physiol Renal Physiol ; 320(3): F351-F358, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33459166

RESUMO

A heterozygous mutation (c.643C.A; p.Q215X) in the creatine transporter SLC16A12 has been proposed to cause a syndrome with juvenile cataracts, microcornea, and glucosuria in humans. To further explore the role of SLC16A12 in renal physiology and decipher the mechanism underlying the phenotype of humans with the SLC16A12 mutation, we studied Slc16a12 knockout (KO) rats. Slc16a12 KO rats had lower plasma levels and increased absolute and fractional urinary excretion of creatine and its precursor guanidinoacetate (GAA). Slc16a12 KO rats displayed lower plasma and urinary creatinine levels, but the glomerular filtration rate was normal. The phenotype of heterozygous rats was indistinguishable from wild-type (WT) rats. Renal artery to vein (RAV) concentration differences in WT rats were negative for GAA and positive for creatinine. However, RAV differences for GAA were similar in Slc16a12 KO rats, indicating incomplete compensation of urinary GAA losses by renal GAA synthesis. Together, our results reveal that Slc16a12 in the basolateral membrane of the proximal tubule is critical for the reabsorption of creatine and GAA. Our data suggest a dominant-negative mechanism underlying the phenotype of humans affected by the heterozygous SLC16A12 mutation. Furthermore, in the absence of Slc16a12, urinary losses of GAA are not adequately compensated by increased tubular synthesis, likely caused by feedback inhibition of the rate-limiting enzyme l-arginine:glycine amidinotransferase by creatine in proximal tubular cells.NEW & NOTEWORTHY SLC16A12 is a recently identified creatine transporter of unknown physiological function. A heterozygous mutation in the human SLC16A12 gene causes juvenile cataracts and reduced plasma guanidinoacetate (GAA) levels with an increased fractional urinary excretion of GAA. Our study with transgenic SLC16A12-deficient rats reveals that SLC16A12 is critical for tubular reabsorption of creatine and GAA in the kidney. Our data furthermore indicate a dominant-negative mechanism underlying the phenotype of humans affected by the heterozygous SLC16A12 mutation.


Assuntos
Creatinina/urina , Glicina/análogos & derivados , Túbulos Renais Proximais/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Reabsorção Renal , Animais , Creatinina/sangue , Técnicas de Inativação de Genes , Genótipo , Glicina/sangue , Glicina/urina , Fígado/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Fenótipo , Ratos Endogâmicos F344 , Ratos Transgênicos
10.
J Inherit Metab Dis ; 43(5): 1102-1111, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32319100

RESUMO

Rapid diagnosis and early specific treatment of metabolic epilepsies due to inborn errors of metabolism (IEMs) is crucial to avoid irreversible sequalae. Nowadays, besides the profile analysis of amino- and organic acids, a range of additional targeted assays is used for the selective screening of those diseases. This strategy can lead to long turn-around times, repeated sampling and diagnostic delays. To replace those individual targeted assays, we developed a new liquid chromatography mass spectrometry method (LC-MS/MS) for the differential diagnosis of inherited metabolic epilepsies that are potentially treatable. The method was developed to simultaneously quantify 12 metabolites (sulfocysteine, guanidinoacetate, creatine, pipecolic acid, Δ1 -piperideine-6-carboxylate (P6C), proline, Δ1 -pyrroline-5-carboxylate (P5C), and the B6 -vitamers) enabling the diagnosis of nine different treatable IEMs presenting primarily with early-onset epilepsy. Plasma and urine samples were mixed with internal standards, precipitated and the supernatants were analyzed by LC-MS/MS. In comparison with previous assays, no derivatization of the metabolites is necessary for analysis. This LC-MS method was validated for quantitative results for all metabolites except P6C and P5C for which semiquantitative results were obtained due to the absence of commercially available standards. Coefficients of variation for all analytes were below 15% and recovery rates range between 80% and 120%. Analysis of patient samples with known IEMs demonstrated the diagnostic value of the method. The presented assay covers a selected panel of biochemical markers, improves the efficiency in the laboratory, and potentially leads to faster diagnoses and earlier treatment avoiding irreversible damage in patients affected with IEMs.


Assuntos
Cromatografia Líquida/métodos , Epilepsia/sangue , Erros Inatos do Metabolismo/sangue , Convulsões/sangue , Espectrometria de Massas em Tandem/métodos , Aldeído Desidrogenase/sangue , Aldeído Desidrogenase/deficiência , Biomarcadores/sangue , Diagnóstico Diferencial , Epilepsia/diagnóstico , Humanos , Erros Inatos do Metabolismo/diagnóstico , Ácidos Picolínicos/sangue , Ácidos Pipecólicos/sangue , Convulsões/diagnóstico
11.
J Inherit Metab Dis ; 43(4): 891-900, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31930735

RESUMO

Antiquitin (ATQ) deficiency leads to tissue, plasma, and urinary accumulation of alpha-aminoadipic semialdehyde (AASA) and its Schiff base delta-1-piperideine-6-carboxylate (P6C). Although genetic testing of ALDH7A1 is the most definitive diagnostic method, quantifications of pathognomonic metabolites are important for the diagnosis and evaluation of therapeutic and dietary interventions. Current metabolite quantification methods use laborious, technically highly complex, and expensive liquid chromatography-tandem mass spectro-metry, which is available only in selected laboratories worldwide. Incubation of ortho-aminobenzaldehyde (oABA) with P6C leads to the formation of a triple aromatic ring structure with characteristic absorption and fluorescence properties. The mean concentration of P6C in nine urine samples from seven ATQ-deficient patients under standard treatment protocols was statistically highly significantly different (P < .001) compared to the mean of 74 healthy controls aged between 2 months and 57 years. Using this limited data set the specificity and sensitivity is 100% for all tested age groups using a P6C cut-off of 2.11 µmol/mmol creatinine, which represents the 99% prediction interval of the P6C concentrations in 17 control urine samples from children below 6 years of age. Plasma P6C concentrations were only elevated in one ATQ subject, possibly because P6C is trapped by pyridoxal-5-phosphate (PLP) blocking fusing with oABA. Nevertheless, both urine and plasma samples were amenable to the quantification of exogenous P6C with high response rates. The P6C quantification method using fusion of oABA with P6C is fast, simple, and inexpensive and might be readily implemented into routine clinical diagnostic laboratories for the early diagnosis of neonatal pyridoxine-dependent epilepsy.


Assuntos
Aldeído Desidrogenase/deficiência , Benzaldeídos/urina , Epilepsia/urina , Ácidos Picolínicos/urina , Adolescente , Adulto , Aldeído Desidrogenase/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Dieta , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/metabolismo , Feminino , Humanos , Lactente , Lisina/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165622, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31770620

RESUMO

Isolated methylmalonic aciduria (MMAuria) is primarily caused by deficiency of methylmalonyl-CoA mutase (MMUT or MUT). Biochemically, MUT deficiency results in the accumulation of methylmalonic acid (MMA), propionyl-carnitine (C3) and other metabolites. Patients often exhibit lethargy, failure to thrive and metabolic decompensation leading to coma or even death, with kidney and neurological impairment frequently identified in the long-term. Here, we report a hemizygous mouse model which combines a knock-in (ki) missense allele of Mut with a knock-out (ko) allele (Mut-ko/ki mice) that was fed a 51%-protein diet from day 12 of life, constituting a bespoke model of MMAuria. Under this diet, mutant mice developed a pronounced metabolic phenotype characterized by drastically increased blood levels of MMA and C3 compared to their littermate controls (Mut-ki/wt). With this bespoke mouse model, we performed a standardized phenotypic screen to assess the whole-body impairments associated with this strong metabolic condition. We found that Mut-ko/ki mice show common clinical manifestations of MMAuria, including pronounced failure to thrive, indications of mild neurological and kidney dysfunction, and degenerative morphological changes in the liver, along with less well described symptoms such as cardiovascular and hematological abnormalities. The analyses also reveal so far unknown disease characteristics, including low bone mineral density, anxiety-related behaviour and ovarian atrophy. This first phenotypic screening of a MMAuria mouse model confirms its relevance to human disease, reveals new alterations associated with MUT deficiency, and suggests a series of quantifiable readouts that can be used to evaluate potential treatment strategies.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Metilmalonil-CoA Mutase/deficiência , Metilmalonil-CoA Mutase/genética , Animais , Ansiedade/genética , Ansiedade/patologia , Densidade Óssea/genética , Modelos Animais de Doenças , Feminino , Rim/patologia , Masculino , Ácido Metilmalônico/metabolismo , Camundongos , Fenótipo
13.
Nutrients ; 11(8)2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405149

RESUMO

Population-based data suggest that high intake of omega-3 (n-3) polyunsaturated fatty acids (PUFA) may be beneficial in a variety of health conditions. It is likely that mainly those patients with preexisting n-3 deficiency are those that benefit most from n-3 fatty acid supplementation. Therefore, for targeted interventions, a fast and reliable screening tool for n-3 PUFA intake is necessary. Thus, the aim of this project was to adapt and validate a food frequency questionnaire (FFQ) for n-3 PUFA intake in Switzerland while using as references the following: (1) 7-day food records (FR), and (2) n-3 fatty acid composition of red blood cells (RBC). We recruited 46 healthy adults for the first part of the study and 152 for the second. We used the dietary software EBISpro for the analysis of n-3 PUFA intake. RBC fatty acid composition was determined by gas chromatography mass spectrometry (GC-MS). Using correlation analysis, we found a moderate significant association between FFQ and FR for α-linolenic acid (ALA), eicosapentanoic acid (EPA), docosahexanoic acid (DHA), and total n-3 fatty acids (all r between 0.523 and 0.586, all p < 0.001). Bland Altman analysis further showed good agreement between the two methods and no proportional bias. Correlations between FFQ and RBC fatty acid composition were also moderate for EPA and DHA (r = 0.430 and r = 0.605, p < 0.001), but weaker for ALA and total n-3 (r = 0.314 and r = 0.211, p < 0.01). The efficacy of the FFQ to classify individuals into the same or adjacent quartile of RBC PUFA content ranged between 70% and 87% for the different fatty acids. In conclusion, we showed that the Swiss n-3 PUFA FFQ is a valid tool to assess dietary n-3 PUFA intake, especially DHA and EPA, to determine population groups at risk for low intake.


Assuntos
Inquéritos sobre Dietas/normas , Dieta/estatística & dados numéricos , Gorduras na Dieta/análise , Ácidos Graxos Ômega-3/análise , Adolescente , Adulto , Registros de Dieta , Ácidos Docosa-Hexaenoicos/análise , Ácido Eicosapentaenoico/análise , Eritrócitos/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Suíça , Adulto Jovem
14.
J Inherit Metab Dis ; 42(4): 620-628, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30767241

RESUMO

Deficiency of antiquitin (ATQ), an enzyme involved in lysine degradation, is the major cause of vitamin B6 -dependent epilepsy. Accumulation of the potentially neurotoxic α-aminoadipic semialdehyde (AASA) may contribute to frequently associated developmental delay. AASA is formed by α-aminoadipic semialdehyde synthase (AASS) via the saccharopine pathway of lysine degradation, or, as has been postulated, by the pipecolic acid (PA) pathway, and then converted to α-aminoadipic acid by ATQ. The PA pathway has been considered to be the predominant pathway of lysine degradation in mammalian brain; however, this was refuted by recent studies in mouse. Consequently, inhibition of AASS was proposed as a potential new treatment option for ATQ deficiency. It is therefore of utmost importance to determine whether the saccharopine pathway is also predominant in human brain cells. The route of lysine degradation was analyzed by isotopic tracing studies in cultured human astrocytes, ReNcell CX human neuronal progenitor cells and human fibroblasts, and expression of enzymes of the two lysine degradation pathways was determined by Western blot. Lysine degradation was only detected through the saccharopine pathway in all cell types studied. The enrichment of 15 N-glutamate as a side product of AASA formation through AASS furthermore demonstrated activity of the saccharopine pathway. We provide first evidence that the saccharopine pathway is the major route of lysine degradation in cultured human brain cells. These results support inhibition of the saccharopine pathway as a new treatment option for ATQ deficiency.


Assuntos
Ácido 2-Aminoadípico/análogos & derivados , Aldeído Desidrogenase/deficiência , Epilepsia/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Ácido 2-Aminoadípico/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Epilepsia/genética , Humanos , Redes e Vias Metabólicas , Ácidos Pipecólicos/metabolismo , Vitamina B 6/uso terapêutico
15.
Neuropediatrics ; 49(2): 154-157, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29401530

RESUMO

Antiquitin deficiency is the most prevalent form of pyridoxine-dependent epilepsy. While most patients present with neonatal onset of therapy-resistant seizures, a few cases with late-onset during infancy have been described. Here, we describe the juvenile onset of epilepsy at the age of 17 years due to antiquitin deficiency in an Indian female with homozygosity for the most prevalent ALDH7A1 missense mutation, c.1279G > C; p.Glu427Gln in exon 14. The diagnosis was established along familial cosegregation analysis for an affected offspring, that had neonatal pyridoxine responsive seizures and had been found to be compound heterozygous for c.1279G > C; p.Glu427Gln in exon 14 and a nonsense mutation c.796C > T; p.Arg266* in exon 9. While seizures in the mother had been incompletely controlled by levetiracetam, she remained seizure-free on pyridoxine monotherapy, 200 mg/day. Her fourth pregnancy resulted in a female affected offspring, who was treated prospectively and never developed seizures with a normal outcome at age 2 years while on pyridoxine. This report illustrates that the phenotypic spectrum of antiquitin deficiency is still underestimated and that this treatable inborn error of metabolism has to be considered in case of therapy-resistant seizures even at older age. It furthermore supports prospective in utero treatment with pyridoxine in forthcoming pregnancies at risk.


Assuntos
Aldeído Desidrogenase/deficiência , Epilepsia/etiologia , Epilepsia/genética , Doenças Metabólicas/complicações , Doenças Metabólicas/genética , Idade de Início , Aldeído Desidrogenase/genética , Epilepsia/sangue , Epilepsia/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Doenças Metabólicas/sangue , Doenças Metabólicas/diagnóstico por imagem , Ácidos Pipecólicos/sangue , Adulto Jovem
16.
Swiss Med Wkly ; 147: w14421, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28421567

RESUMO

BACKGROUND: Vitamin B12 (VB12) deficiency can be treated with oral high-dose substitution or intramuscular (i.m.) injection of VB12. Whenever alternative routes of administration exist, patient preferences should be considered when choosing the treatment. We aimed to assess outpatient preferences towards oral or IM VB12 substitution and confirm noninferiority of early biomarker response with oral treatment, in a typical primary care population. METHODS: Prospective randomised nonblinded parallel-group trial. Patients were recruited by their general practitioner and randomly assigned to oral or IM treatment. Group O-oral was given 28 tablets of 1000 µg cyanocobalamin in a monthly punch card fitted with an electronic monitoring system. Group I-IM received four, weekly injections of 1000 µg hydroxocobalamin. Blood samples were drawn before the first administration and after 1, 2 and 4 weeks of treatment, and analysed for VB12, holotranscobalamin (HoloTc), homocysteine (Hcy) and methylmalonic acid (MMA). For group O-oral, treatment adher-ence and percentage of days with 2 dosing events were calcu-lated. Before and after 28 days of treatment, patients were asked to fill in a questionnaire about their preference for the therapy options and associated factors. RESULTS: Between November 2013 and December 2015, 37 patients (age: 49.5 ± 18.5 years; women: 60.5%) were recruited for oral (19) or IM (18) treatment. Baseline values with 95% confidence intervals for serum VB12, HoloTc, Hcy and MMA were 158 pmol/l [145-172], 49.0 pmol/l [40.4-57.5], 14.8 µmol/l [12.0-17.7] and 304 nmol/l [219-390], respective-ly, in group O-oral and 164 pmol/l [154-174], 50.1 pmol/l [38.7-61.6], 13.0 µmol/l [11.0-15.1] and 321 nmol/l [215-427], respectively, in group I-IM (not significant). After 1 month of treatment, levels of VB12 and HoloTc showed a significant increase compared with baseline (group O-oral: VB12 354 pmol/l [298-410] and HoloTc 156 pmol/l [116-196]; group I-IM: VB12 2796 pmol/l [1277-4314] and HoloTc 1269 pmol/l [103-2435]). Hcy and MMA levels showed a significant decrease compared with baseline (group O-oral: Hcy 13.8 µmol/l [10.7-16.8] and MMA 168 nmol/l [134-202]; group I-IM: Hcy 8.5 µmol/l [7.1-9.8] and MMA 156 nmol/l [121-190]). HoloTc and MMA levels were normalised in all patients after 4 weeks of treatment, whereas normalisation of VB12 and Hcy was reached by all patients in group I-IM only. Response of VB12, HoloTc and Hcy was more pronounced in group I-IM (p <0.01) and the primary hypothesis that oral VB12 treatment would be noninfe-rior to IM treatment was rejected. Average adherence to thera-py was 99.6 ± 1.1% and days with 2 dosing events reached 5.6%. Before randomisation, preference was in favour of oral treatment (45.9%, n = 17) over IM administration (21.6%, n = 8). Twelve patients (32.4%) had no preference. Nine (24.3%) patients changed their preference after treatment. Patients who obtained their preferred route of administration main-tained their preference in the case of oral treatment and changed their preference after IM treatment. CONCLUSIONS: Differences in VB12 levels between groups were higher than expected. Therefore, noninferiority of oral treat-ment had to be rejected. However, normalisation of HoloTc and MMA was reached by all patients after a 1-month treatment period. The clinical benefit of the exaggerated biomarker re-sponse after IM treatment within a typical primary care popula-tion is questionable. Midterm biomarker effects and patient preferences should be considered when a therapeutic scheme is chosen. Initial rating in favour of either IM or oral therapy can change over time and justifies repeated re-evaluation of patient preferences. (ClinicalTrials.gov ID NCT01832129).


Assuntos
Administração Oral , Biomarcadores/sangue , Injeções Intramusculares , Preferência do Paciente , Deficiência de Vitamina B 12 , Feminino , Humanos , Hidroxocobalamina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Atenção Primária à Saúde , Estudos Prospectivos , Inquéritos e Questionários , Vitamina B 12/sangue , Vitamina B 12/uso terapêutico , Deficiência de Vitamina B 12/tratamento farmacológico , Complexo Vitamínico B/uso terapêutico
17.
J Med Genet ; 54(12): 809-814, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28391250

RESUMO

Vitamin-B6-dependent epilepsies are a heterogenous group of treatable disorders due to mutations in several genes (ALDH7A1, PNPO, ALPL or ALDH4A1). In neonatal seizures, defects in ALDH7A1 and PNPO explain a major fraction of cases. Very recently biallelic mutations in PROSC were shown to be a novel cause in five families. We identified four further unrelated patients harbouring a total of six different mutations, including four novel disease mutations. Vitamin B6 plasma profiles on pyridoxine did not enable the differentiation of patients with PROSC mutations. All four patients were normocephalic and had normal cranial imaging. Pyridoxine monotherapy allowed complete seizure control in one, while two patients had occasional febrile or afebrile seizures and one needed additional valproate therapy for photosensitive seizures. Two patients underwent a controlled pyridoxine withdrawal with signs of encephalopathy within a couple of days. Three had favourable outcome with normal intellectual properties at age 12.5, 15.5 and 30 years, respectively, while one child had marked developmental delay at age 27 months. The clinical and electroencephalographic phenotype in patients with PROSC mutations was indistinguishable from ALDH7A1 and PNPO deficiency. We therefore confirm PROSC as a novel gene for vitamin-B6-dependent epilepsy and delineate a non-specific plasma vitamin B6 profile under pyridoxine treatment.


Assuntos
Epilepsia/etiologia , Epilepsia/metabolismo , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Proteínas/genética , Vitamina B 6/metabolismo , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Consanguinidade , Análise Mutacional de DNA , Eletroencefalografia , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Fenótipo , Piridoxina/uso terapêutico , Vitamina B 6/sangue
18.
Clin Chim Acta ; 464: 236-243, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27923571

RESUMO

BACKGROUND: Clinical management of inherited or acquired hyperammonemia depends mainly on the plasma ammonia level which is not a reliable indicator of urea cycle function as its concentrations largely fluctuate. The gold standard to assess ureagenesis in vivo is the use of stable isotopes. METHODS: Here we developed and validated a simplified in vivo method with [15N]ammonium chloride ([15N]H4Cl) as a tracer. Non-labeled and [15N]urea were quantified by GC-MS after extraction and silylation. RESULTS: Different matrices were evaluated for suitability of analysis. Ureagenesis was assessed in ornithine transcarbamylase (OTC)-deficient spfash mice with compromised urea cycle function during fasted and non-fasted feeding states, and after rAAV2/8-vector delivery expressing the murine OTC-cDNA in liver. Blood (5µL) was collected through tail vein puncture before and after [15N]H4Cl intraperitoneal injections over a two hour period. The tested matrices, blood, plasma and dried blood spots, can be used to quantify ureagenesis. Upon [15N]H4Cl challenge, urea production in spfash mice was reduced compared to wild-type and normalized following rAAV2/8-mediated gene therapeutic correction. The most significant difference in ureagenesis was at 30min after injection in untreated spfash mice under fasting conditions (19% of wild-type). Five consecutive injections over a period of five weeks had no effect on body weight or ureagenesis. CONCLUSION: This method is simple, robust and with no apparent risk, offering a sensitive, minimal-invasive, and fast measurement of ureagenesis capacity using dried blood spots. The stable isotope-based quantification of ureagenesis can be applied for the efficacy-testing of novel molecular therapies.


Assuntos
Teste em Amostras de Sangue Seco/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ureia/sangue , Animais , Jejum/sangue , Isótopos , Masculino , Camundongos , Ornitina Carbamoiltransferase/metabolismo
19.
J Biol Chem ; 291(39): 20563-73, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27519416

RESUMO

Methylmalonic aciduria (MMAuria), caused by deficiency of methylmalonyl-CoA mutase (MUT), usually presents in the newborn period with failure to thrive and metabolic crisis leading to coma or even death. Survivors remain at risk of metabolic decompensations and severe long term complications, notably renal failure and neurological impairment. We generated clinically relevant mouse models of MMAuria using a constitutive Mut knock-in (KI) allele based on the p.Met700Lys patient mutation, used homozygously (KI/KI) or combined with a knockout allele (KO/KI), to study biochemical and clinical MMAuria disease aspects. Transgenic Mut(ki/ki) and Mut(ko/ki) mice survive post-weaning, show failure to thrive, and show increased methylmalonic acid, propionylcarnitine, odd chain fatty acids, and sphingoid bases, a new potential biomarker of MMAuria. Consistent with genetic dosage, Mut(ko/ki) mice have lower Mut activity, are smaller, and show higher metabolite levels than Mut(ki/ki) mice. Further, Mut(ko/ki) mice exhibit manifestations of kidney and brain damage, including increased plasma urea, impaired diuresis, elevated biomarkers, and changes in brain weight. On a high protein diet, mutant mice display disease exacerbation, including elevated blood ammonia, and catastrophic weight loss, which, in Mut(ki/ki) mice, is rescued by hydroxocobalamin treatment. This study expands knowledge of MMAuria, introduces the discovery of new biomarkers, and constitutes the first in vivo proof of principle of cobalamin treatment in mut-type MMAuria.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Dosagem de Genes , Metilmalonil-CoA Mutase , Fenótipo , Característica Quantitativa Herdável , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Amônia/metabolismo , Animais , Biomarcadores/sangue , Encéfalo/metabolismo , Encéfalo/patologia , Carnitina/análogos & derivados , Carnitina/sangue , Proteínas Alimentares/efeitos adversos , Proteínas Alimentares/farmacologia , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Rim/metabolismo , Rim/patologia , Ácido Metilmalônico/sangue , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Camundongos , Camundongos Knockout
20.
J Inherit Metab Dis ; 39(5): 733-741, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27342130

RESUMO

BACKGROUND: Recent decades have unravelled the molecular background of a number of inborn errors of metabolism (IEM) causing vitamin B6-dependent epilepsy. As these defects interfere with vitamin B6 metabolism by different mechanisms, the plasma vitamin B6 profile can give important clues for further molecular work-up. This has so far been investigated in only a small number of patients. METHODS: We evaluated the vitamin B6 vitamers pyridoxal 5'-phosphate (PLP), pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN) and the catabolite pyridoxic acid (PA) in the so far largest patient cohort: reference (n = 50); pyridox(am)ine 5'-phosphate oxidase (PNPO) deficiency (n = 6); antiquitin (ATQ) deficiency (n = 21); tissue non-specific alkaline phosphatase (TNSALP) deficiency (n = 2) and epileptic encephalopathy (EE) of unknown etiology tested negative for ATQ and PNPO deficiency (n = 64). RESULTS: High plasma PM concentration was found in all patients with PNPO deficiency irrespective of vitamin B6 supplementation. Their PM concentration and the PM/PA ratio was significantly higher (p < 0.0001), compared to any other patients analysed. One patient with TNSALP deficiency and sampling prior to PN supplementation had markedly elevated plasma PLP concentration. On PN supplementation, patients with TNSALP deficiency, ATQ deficiency and patients of the EE cohort had similar plasma vitamin B6 profiles that merely reflect the intake of supra-physiological doses of vitamin B6. The interval of sampling to the last PN intake strongly affected the plasma concentrations of PN, PL and PA. CONCLUSIONS: PM concentrations and the PM/PA ratio clearly separated PNPO-deficient patients from the other cohorts. The plasma PM/PA ratio thus represents a robust biomarker for the selective screening of PNPO deficiency.


Assuntos
Plasma/química , Espasmos Infantis/sangue , Adolescente , Adulto , Biomarcadores/sangue , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Erros Inatos do Metabolismo/sangue , Piridoxal/sangue , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/sangue , Piridoxamina/sangue , Ácido Piridóxico/sangue , Piridoxina/sangue , Vitamina B 6/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA