Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Immunol Cell Biol ; 102(9): 752-756, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39157866

RESUMO

Toll-like receptors (TLRs) are innate immune sensors for the presence of pathogens and endogenous danger signals. TLR activation results in conserved intracellular signaling events that orchestrate inflammation and antimicrobial defense. While the identity and interplay of key TLR signaling components are well established, how these largely cytosolic proteins are physically connected is not well understood. For the activation of conserved intracellular signaling events, most TLRs engage the adapter MyD88 (myeloid differentiation primary response 88), which assembles into higher-order protein complexes, myddosomes. In their recent publication, Fisch et al. present evidence that oligomeric myddosomes detach from initiating TLRs and evolve into larger scaffolds that dynamically assemble not only proximal but also distal cytosolic elements required to execute the entire cascade of the TLR-MyD88 signaling pathway. Coinciding with decline in TLR signaling over time, myddosomes progressively recruit autophagy machinery that mediates myddosome clearance. These findings expand the current understanding of TLR signaling by positioning myddosomes as the central structural element that physically assembles the key executors and regulators of TLR-MyD88-dependent intracellular signaling cascades.


Assuntos
Fator 88 de Diferenciação Mieloide , Transdução de Sinais , Receptores Toll-Like , Animais , Humanos , Autofagia , Imunidade Inata , Fator 88 de Diferenciação Mieloide/metabolismo , Ligação Proteica , Receptores Toll-Like/metabolismo
2.
PLoS Pathog ; 18(1): e1010166, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007292

RESUMO

A hallmark of Listeria (L.) monocytogenes pathogenesis is bacterial escape from maturing entry vacuoles, which is required for rapid bacterial replication in the host cell cytoplasm and cell-to-cell spread. The bacterial transcriptional activator PrfA controls expression of key virulence factors that enable exploitation of this intracellular niche. The transcriptional activity of PrfA within infected host cells is controlled by allosteric coactivation. Inhibitory occupation of the coactivator site has been shown to impair PrfA functions, but consequences of PrfA inhibition for L. monocytogenes infection and pathogenesis are unknown. Here we report the crystal structure of PrfA with a small molecule inhibitor occupying the coactivator site at 2.0 Å resolution. Using molecular imaging and infection studies in macrophages, we demonstrate that PrfA inhibition prevents the vacuolar escape of L. monocytogenes and enables extensive bacterial replication inside spacious vacuoles. In contrast to previously described spacious Listeria-containing vacuoles, which have been implicated in supporting chronic infection, PrfA inhibition facilitated progressive clearance of intracellular L. monocytogenes from spacious vacuoles through lysosomal degradation. Thus, inhibitory occupation of the PrfA coactivator site facilitates formation of a transient intravacuolar L. monocytogenes replication niche that licenses macrophages to effectively eliminate intracellular bacteria. Our findings encourage further exploration of PrfA as a potential target for antimicrobials and highlight that intra-vacuolar residence of L. monocytogenes in macrophages is not inevitably tied to bacterial persistence.


Assuntos
Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Macrófagos/microbiologia , Vacúolos/microbiologia , Virulência/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Immunol Cell Biol ; 99(10): 1067-1076, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555867

RESUMO

The proinflammatory cytokine tumor necrosis factor (TNF) plays a central role in the host control of mycobacterial infections. Expression and release of TNF are tightly regulated, yet the molecular mechanisms that control the release of TNF by mycobacteria-infected host cells, in particular macrophages, are incompletely understood. Rab GTPases direct the transport of intracellular membrane-enclosed vesicles and are important regulators of macrophage cytokine secretion. Rab6b is known to be predominantly expressed in the brain where it functions in retrograde transport and anterograde vesicle transport for exocytosis. Whether it executes similar functions in the context of immune responses is unknown. Here we show that Rab6b is expressed by primary mouse macrophages, where it localized to the Golgi complex. Infection with Mycobacterium bovis bacille Calmette-Guérin (BCG) resulted in dynamic changes in Rab6b expression in primary mouse macrophages in vitro as well as in organs from infected mice in vivo. We further show that Rab6b facilitated TNF release by M. bovis BCG-infected macrophages, in the absence of discernible impact on Tnf messenger RNA and intracellular TNF protein expression. Our observations identify Rab6b as a positive regulator of M. bovis BCG-induced TNF trafficking and secretion by macrophages and positions Rab6b among the molecular machinery that orchestrates inflammatory cytokine responses by macrophages.


Assuntos
Complexo de Golgi/imunologia , Macrófagos/imunologia , Infecções por Mycobacterium , Fator de Necrose Tumoral alfa/imunologia , Proteínas rab de Ligação ao GTP/imunologia , Animais , Camundongos , Infecções por Mycobacterium/imunologia , Mycobacterium bovis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA