Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 80(10): 1970-1980, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32060146

RESUMO

The Sonic Hedgehog (SHH) pathway plays a key role in cancer. Alterations of SHH canonical signaling, causally linked to tumor progression, have become rational targets for cancer therapy. However, Smoothened (SMO) inhibitors have failed to show clinical benefit in patients with cancers displaying SHH autocrine/paracrine expression. We reported earlier that the SHH receptor Patched (PTCH) is a dependence receptor that triggers apoptosis in the absence of SHH through a pathway that differs from the canonical one, thus generating a state of dependence on SHH for survival. Here, we propose a dual function for SHH: its binding to PTCH not only activates the SHH canonical pathway but also blocks PTCH-induced apoptosis. Eighty percent, 64%, and 8% of human colon, pancreatic, and lung cancer cells, respectively, overexpressed SHH at transcriptional and protein levels. In addition, SHH-overexpressing cells expressed all the effectors of the PTCH-induced apoptotic pathway. Although the canonical pathway remained unchanged, autocrine SHH interference in colon, pancreatic, and lung cell lines triggered cell death through PTCH proapoptotic signaling. In vivo, SHH interference in colon cancer cell lines decreased primary tumor growth and metastasis. Therefore, the antitumor effect associated to SHH deprivation, usually thought to be a consequence of the inactivation of the canonical SHH pathway, is, at least in part, because of the engagement of PTCH proapoptotic activity. Together, these data strongly suggest that therapeutic strategies based on the disruption of SHH/PTCH interaction in SHH-overexpressing cancers should be explored. SIGNIFICANCE: Sonic Hedgehog-overexpressing tumors express PTCH-induced cell death effectors, suggesting that this death signaling could be activated as an antitumor strategy.


Assuntos
Apoptose/fisiologia , Proteínas Hedgehog/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Receptores Patched/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Embrião de Galinha , Xenoenxertos , Humanos , Camundongos , Transdução de Sinais/fisiologia , Peixe-Zebra
2.
Epigenetics ; 15(5): 511-523, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31838945

RESUMO

In human tumours, the crosstalk between cancer cells and their microenvironment is involved in tumour progression, metastasis and resistance to anti-cancer therapies. Among the factors involved in this exchange of information pro-inflammatory cytokines seem to play a crucial role. We observed that a group of pro-inflammatory cytokines, interleukin 6 (IL6), interleukin 1-beta (IL1b), and tumour necrosis factor-alpha (TNFa), preferentially activated genes exhibiting a high basal methylation level at their transcription start sites, in the human breast cancer cell line MCF7. In human breast tumours, these responding genes were also hypermethylated, and some of them (N = 104) were differentially methylated across human breast tumour samples (The Cancer Genome Atlas cohort). While their expression was positively correlated with the stromal content of the tumours and the expression of stromal-associated pro-inflammatory cytokines, the expression of this subset of genes was negatively correlated with their methylation level at their 5' end. Nevertheless, while the methylation level of this subset of genes was not correlated with the stromal cell content of the tumours, this negative correlation was partially lost in tumours with high stromal cell content. Consistently, we observed that the methylation level in this subset of genes influenced the correlation between gene expression and stromal cell content. Thus, these data indicated that the stromal component of breast tumours should be taken into account for DNA methylation and gene expression studies and suggest an additional pathway, via DNA methylation, in the cross-talk between cancer cells and their microenvironment in human breast cancers.


Assuntos
Neoplasias da Mama/genética , Citocinas/genética , Metilação de DNA , Células Estromais/metabolismo , Linhagem Celular , Citocinas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Células MCF-7 , Microambiente Tumoral
3.
Aging Cell ; 17(3): e12736, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29446526

RESUMO

Oncogenic signals lead to premature senescence in normal human cells causing a proliferation arrest and the elimination of these defective cells by immune cells. Oncogene-induced senescence (OIS) prevents aberrant cell division and tumor initiation. In order to identify new regulators of OIS, we performed a loss-of-function genetic screen and identified that the loss of SCN9A allowed cells to escape from OIS. The expression of this sodium channel increased in senescent cells during OIS. This upregulation was mediated by NF-κB transcription factors, which are well-known regulators of senescence. Importantly, the induction of SCN9A by an oncogenic signal or by p53 activation led to plasma membrane depolarization, which in turn, was able to induce premature senescence. Computational and experimental analyses revealed that SCN9A and plasma membrane depolarization mediated the repression of mitotic genes through a calcium/Rb/E2F pathway to promote senescence. Taken together, our work delineates a new pathway, which involves the NF-κB transcription factor, SCN9A expression, plasma membrane depolarization, increased calcium, the Rb/E2F pathway and mitotic gene repression in the regulation of senescence. This work thus provides new insight into the involvement of ion channels and plasma membrane potential in the control of senescence.


Assuntos
Senescência Celular/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Proteína do Retinoblastoma/genética , Humanos , Oncogenes , Transdução de Sinais , Transfecção
4.
EMBO Mol Med ; 8(8): 863-77, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27378792

RESUMO

In a number of human cancers, NTN1 upregulation inhibits apoptosis induced by its so-called dependence receptors DCC and UNC5H, thus promoting tumor progression. In other cancers however, the selective inhibition of this dependence receptor death pathway relies on the silencing of pro-apoptotic effector proteins. We show here that a substantial fraction of human breast tumors exhibits simultaneous DNA methylation-dependent loss of expression of NTN1 and of DAPK1, a serine threonine kinase known to transduce the netrin-1 dependence receptor pro-apoptotic pathway. The inhibition of DNA methylation by drugs such as decitabine restores the expression of both NTN1 and DAPK1 in netrin-1-low cancer cells. Furthermore, a combination of decitabine with NTN1 silencing strategies or with an anti-netrin-1 neutralizing antibody potentiates tumor cell death and efficiently blocks tumor growth in different animal models. Thus, combining DNA methylation inhibitors with netrin-1 neutralizing agents may be a valuable strategy for combating cancer.


Assuntos
Neoplasias da Mama/patologia , Metilação de DNA , Regulação para Baixo , Fatores de Crescimento Neural/biossíntese , Proteínas Supressoras de Tumor/biossíntese , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Quinases Associadas com Morte Celular/biossíntese , Humanos , Netrina-1
5.
Nucleic Acids Res ; 43(12): 5838-54, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26007656

RESUMO

DNA methylation is thought to induce transcriptional silencing through the combination of two mechanisms: the repulsion of transcriptional activators unable to bind their target sites when methylated, and the recruitment of transcriptional repressors with specific affinity for methylated DNA. The Methyl CpG Binding Domain proteins MeCP2, MBD1 and MBD2 belong to the latter category. Here, we present MBD2 ChIPseq data obtained from the endogenous MBD2 in an isogenic cellular model of oncogenic transformation of human mammary cells. In immortalized (HMEC-hTERT) or transformed (HMLER) cells, MBD2 was found in a large proportion of methylated regions and associated with transcriptional silencing. A redistribution of MBD2 on methylated DNA occurred during oncogenic transformation, frequently independently of local DNA methylation changes. Genes downregulated during HMEC-hTERT transformation preferentially gained MBD2 on their promoter. Furthermore, depletion of MBD2 induced an upregulation of MBD2-bound genes methylated at their promoter regions, in HMLER cells. Among the 3,160 genes downregulated in transformed cells, 380 genes were methylated at their promoter regions in both cell lines, specifically associated by MBD2 in HMLER cells, and upregulated upon MBD2 depletion in HMLER. The transcriptional MBD2-dependent downregulation occurring during oncogenic transformation was also observed in two additional models of mammary cell transformation. Thus, the dynamics of MBD2 deposition across methylated DNA regions was associated with the oncogenic transformation of human mammary cells.


Assuntos
Transformação Celular Neoplásica/genética , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/metabolismo , Sítios de Ligação , Mama/citologia , Linhagem Celular , Linhagem Celular Transformada , Regulação para Baixo , Células Epiteliais/metabolismo , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Fenótipo , Telomerase/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Homeobox 1 de Ligação a E-box em Dedo de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA