Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Immunohorizons ; 7(5): 366-379, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219538

RESUMO

CD39 (ENTPD1) is a key enzyme responsible for degradation of extracellular ATP and is upregulated in the tumor microenvironment (TME). Extracellular ATP accumulates in the TME from tissue damage and immunogenic cell death, potentially initiating proinflammatory responses that are reduced by the enzymatic activity of CD39. Degradation of ATP by CD39 and other ectonucleotidases (e.g., CD73) results in extracellular adenosine accumulation, constituting an important mechanism for tumor immune escape, angiogenesis induction, and metastasis. Thus, inhibiting CD39 enzymatic activity can inhibit tumor growth by converting a suppressive TME to a proinflammatory environment. SRF617 is an investigational, anti-CD39, fully human IgG4 Ab that binds to human CD39 with nanomolar affinity and potently inhibits its ATPase activity. In vitro functional assays using primary human immune cells demonstrate that inhibiting CD39 enhances T-cell proliferation, dendritic cell maturation/activation, and release of IL-1ß and IL-18 from macrophages. In vivo, SRF617 has significant single-agent antitumor activity in human cell line-derived xenograft models that express CD39. Pharmacodynamic studies demonstrate that target engagement of CD39 by SRF617 in the TME inhibits ATPase activity, inducing proinflammatory mechanistic changes in tumor-infiltrating leukocytes. Syngeneic tumor studies using human CD39 knock-in mice show that SRF617 can modulate CD39 levels on immune cells in vivo and can penetrate the TME of an orthotopic tumor, leading to increased CD8+ T-cell infiltration. Targeting CD39 is an attractive approach for treating cancer, and, as such, the properties of SRF617 make it an excellent drug development candidate.


Assuntos
Imunoglobulina G , Ativação Linfocitária , Humanos , Animais , Camundongos , Anticorpos Monoclonais , Adenosina Trifosfatases , Trifosfato de Adenosina
3.
Oncotarget ; 13: 944-959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937499

RESUMO

The transcription factor GLI3 is a member of the GLI family and has been shown to be regulated by canonical hedgehog (HH) signaling through smoothened (SMO). Little is known about SMO-independent regulation of GLI3. Here, we identify TLR signaling as a novel pathway regulating GLI3 expression. We show that GLI3 expression is induced by LPS/TLR4 in human monocyte cell lines and peripheral blood CD14+ cells. Further analysis identified TRIF, but not MyD88, signaling as the adapter used by TLR4 to regulate GLI3. Using pharmacological and genetic tools, we identified IRF3 as the transcription factor regulating GLI3 downstream of TRIF. Furthermore, using additional TLR ligands that signal through TRIF such as the TLR4 ligand, MPLA and the TLR3 ligand, Poly(I:C), we confirm the role of TRIF-IRF3 in the regulation of GLI3. We found that IRF3 directly binds to the GLI3 promoter region and this binding was increased upon stimulation of TRIF-IRF3 with Poly(I:C). Furthermore, using Irf3 -/- MEFs, we found that Poly(I:C) stimulation no longer induced GLI3 expression. Finally, using macrophages from mice lacking Gli3 expression in myeloid cells (M-Gli3-/- ), we found that in the absence of Gli3, LPS stimulated macrophages secrete less CCL2 and TNF-α compared with macrophages from wild-type (WT) mice. Taken together, these results identify a novel TLR-TRIF-IRF3 pathway that regulates the expression of GLI3 that regulates inflammatory cytokines and expands our understanding of the non-canonical signaling pathways involved in the regulation of GLI transcription factors.


Assuntos
Lipopolissacarídeos , Receptor 4 Toll-Like , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Citocinas/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Camundongos , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso , Poli I-C/farmacologia , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo
4.
Epigenomics ; 13(2): 129-144, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356554

RESUMO

Aim: Waldenström macroglobulinemia (WM) is a low-grade B-cell lymphoma characterized by overproduction of monoclonal IgM. To date, there are no therapies that provide a cure for WM patients, and therefore, it is important to explore new therapies. Little is known about the efficiency of epigenetic targeting in WM. Materials & methods: WM cells were treated with BET inhibitors (JQ1 and I-BET-762) and venetoclax, panobinostat or ibrutinib. Results: BET inhibition reduces growth of WM cells, with little effect on survival. This finding was enhanced by combination therapy, with panobinostat (LBH589) showing the highest synergy. Conclusion: Our studies identify BET inhibitors as effective therapy for WM, and these inhibitors can be enhanced in combination with BCL2 or histone deacetylase inhibition.


Assuntos
Antineoplásicos/farmacologia , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores de Superfície Celular/genética , Macroglobulinemia de Waldenstrom/tratamento farmacológico , Adenina/análogos & derivados , Adenina/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Epigênese Genética/genética , Histona Desacetilases/genética , Humanos , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/genética , Terapia de Alvo Molecular/métodos , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia , Macroglobulinemia de Waldenstrom/genética , Macroglobulinemia de Waldenstrom/metabolismo
5.
Cell Commun Signal ; 18(1): 54, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245491

RESUMO

The transcription factor GLI3 is a member of the Hedgehog (Hh/HH) signaling pathway that can exist as a full length (Gli3-FL/GLI3-FL) or repressor (Gli3-R/GLI3-R) form. In response to HH activation, GLI3-FL regulates HH genes by targeting the GLI1 promoter. In the absence of HH signaling, GLI3 is phosphorylated leading to its partial degradation and the generation of GLI3-R which represses HH functions. GLI3 is also involved in tissue development, immune cell development and cancer. The absence of Gli3 in mice impaired brain and lung development and GLI3 mutations in humans are the cause of Greig cephalopolysyndactyly (GCPS) and Pallister Hall syndromes (PHS). In the immune system GLI3 regulates B, T and NK-cells and may be involved in LPS-TLR4 signaling. In addition, GLI3 was found to be upregulated in multiple cancers and was found to positively regulate cancerous behavior such as anchorage-independent growth, angiogenesis, proliferation and migration with the exception in acute myeloid leukemia (AML) and medulloblastoma where GLI plays an anti-cancerous role. Finally, GLI3 is a target of microRNA. Here, we will review the biological significance of GLI3 and discuss gaps in our understanding of this molecule. Video Abstract.


Assuntos
Doenças Genéticas Inatas/metabolismo , Sistema Imunitário/metabolismo , Neoplasias , Proteínas do Tecido Nervoso , Organogênese , Proteína Gli3 com Dedos de Zinco , Animais , Humanos , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/fisiologia
6.
Oncotarget ; 10(36): 3400-3407, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31164961

RESUMO

The tumor microenvironment (TME) plays an important role in cancer cell biology and is implicated in resistance to therapy. In Waldenström macroglobulinemia (WM), a subtype of Non-Hodgkin lymphoma, the TME modulates WM biology by secreting cytokines that promote the malignant phenotype. In previous work, we have shown that TME-IL-6 promotes WM cell growth and IgM secretion in WM. Tocilizumab/Actemra is an anti-IL-6R antibody, which can competitively block IL-6 binding to the IL-6R. We investigated the efficacy of Tocilizumab in a preclinical mouse model of WM that considers the role of the TME in disease biology. Hairless SCID mice were subcutaneously implanted with BCWM.1 or RPCI-WM1 and bone marrow stromal cells. Groups of mice were treated with Tocilizumab or control antibody three times/week for 5 weeks and the effect on tumor burden and disease biology were evaluated. Although Tocilizumab had no effect on mice survival, there was a significant reduction in tumor growth rate in mice injected with RPCI-WM1 cells treated with Tocilizumab. In mice injected with BCWM.1 cells, there was a significant reduction in human IgM secretion in mice sera with Tocilizumab treatment. There was no significant change in mice weight suggesting Tocilizumab induced no toxicities to the mice. Taken together, our data found that administration of Tocilizumab to tumor bearing mice, results in a significant reduction in tumor volume and IgM secretion. Therefore, the evaluation of the role of Tocilizumab in WM patients may provide therapeutic efficacy by reducing IgM production and slowing the rate of tumor growth.

7.
Mater Sci Eng C Mater Biol Appl ; 92: 317-328, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184756

RESUMO

The systematic investigations concerning the bioconjugation of GdBO3-Fe3O4 nanocomposite and their in vitro biocompatibility with cancer cell lines are reported. The nanocomposites were prepared hydrothermally from magnetite (Fe3O4), borax or boric acid and a Gd3+ salt. Bioconjugation processes were performed with citric acid and fluorescein isothiocyanate-doped silica, followed by the treatment with folic acid. Overall, the procedure involved "bare or PEGylated Fe3O4 as the magnetic core" and "vaterite- or triclinic-type of GdBO3 as the surface borate layer" for comparative evaluation of the results. The successful vectorization of the nanocomposite particles was demonstrated by quantitative and qualitative analytical data. All bioconjugates displayed soft ferromagnetic properties and negative zeta potential values that are appropriate for biological applications. The 10B and 157Gd contents were ca. 1014 atom/µg making them promising agents for BNCT, GdNCT and the combined GdBNCT. The Gd/Fe molar ratios (0.27-0.63) provided the capability for T1- or dual (T1 + T2) magnetic resonance imaging (MRI). In vitro studies were conducted to investigate the efficiency of targeted FA-conjugated versus non-FA conjugated nanoformulations on Mia-Pa-Ca-2, HeLa and A549 cells. Fluorescence microscopy and flow cytometry data unveiled the essential role of the zeta potential competing with folate targeting in the uptake mechanism. The bioconjugated nanoplatforms of GdBO3-Fe3O4 composite, introduced herein, proved to have potential features of next generation agents for magnetically targeted therapy, fluorescence imaging, magnetic resonance imaging/diagnosis and Neutron Capture Therapy.


Assuntos
Compostos Férricos/química , Gadolínio/química , Nanocompostos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ácido Cítrico/química , Fluoresceína-5-Isotiocianato/química , Ácido Fólico/química , Humanos , Nanocompostos/ultraestrutura , Dióxido de Silício/química , Eletricidade Estática
8.
J Immunol ; 198(11): 4481-4489, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28461568

RESUMO

The interaction between tumor cells and their surrounding microenvironment is essential for the growth and persistence of cancer cells. This interaction is mediated, in part, by cytokines. Although the role of cytokines in normal and malignant cell biology is well established, many of the molecular mechanisms regulating their expression remain elusive. In this article, we provide evidence of a novel pathway controlling the transcriptional activation of CD40L in bone marrow-derived stromal cells. Using a PCR-based screening of cytokines known to play a role in the biology of bone marrow malignancies, we identified CD40L as a novel GLI2 target gene in stromal cells. CD40L plays an important role in malignant B cell biology, and we found increased Erk phosphorylation and cell growth in malignant B cells cocultured with CD40L-expressing stromal cells. Further analysis indicated that GLI2 overexpression induced increased CD40L expression, and, conversely, GLI2 knockdown reduced CD40L expression. Using luciferase and chromatin immunoprecipitation assays, we demonstrate that GLI2 directly binds and regulates the activity of the CD40L promoter. We found that the CCR3-PI3K-AKT signaling modulates the GLI2-CD40L axis, and GLI2 is required for CCR3-PI3K-AKT-mediated regulation of the CD40L promoter. Finally, coculture of malignant B cells with cells stably expressing human CD40L results in increased Erk phosphorylation and increased malignant B cell growth, indicating that CD40L in the tumor microenvironment promotes malignant B cell activation. Therefore, our studies identify a novel molecular mechanism of regulation of CD40L by the transcription factor GLI2 in the tumor microenvironment downstream of CCR3 signaling.


Assuntos
Ligante de CD40/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Animais , Linfócitos B/patologia , Ligante de CD40/imunologia , Ligante de CD40/metabolismo , Imunoprecipitação da Cromatina , Citocinas/imunologia , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Proteínas Nucleares/genética , Fosforilação , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CCR3/metabolismo , Proteína Gli2 com Dedos de Zinco
9.
Mol Pharm ; 11(7): 2442-52, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24836513

RESUMO

The use of the tumor suppressor p53 for gene therapy of cancer is limited by the dominant negative inactivating effect of mutant endogenous p53 in cancer cells. We have shown previously that swapping the tetramerization domain (TD) of p53 with the coiled-coil (CC) from Bcr allows for our chimeric p53 (p53-CC) to evade hetero-oligomerization with endogenous mutant p53. This enhances the utility of this construct, p53-CC, for cancer gene therapy. Because domain swapping to create p53-CC could result in p53-CC interacting with endogenous Bcr, which is ubiquitous in cells, modifications on the CC domain are necessary to minimize potential interactions with Bcr. Hence, we investigated the possible design of mutations that will improve homodimerization of CC mutants and disfavor hetero-oligomerization with wild-type CC (CCwt), with the goal of minimizing potential interactions with endogenous Bcr in cells. This involved integrated computational and experimental approaches to rationally design an enhanced version of our chimeric p53-CC tumor suppressor. Indeed, the resulting lead candidate p53-CCmutE34K-R55E avoids binding to endogenous Bcr and retains p53 tumor suppressor activity. Specifically, p53-CCmutE34K-R55E exhibits potent apoptotic activity in a variety of cancer cell lines, regardless of p53 status (in cells with mutant p53, wild-type p53, or p53-null cells). This construct overcomes the dominant negative effect limitation of wt p53 and has high significance for future gene therapy for treatment of cancers characterized by p53 dysfunction, which represent over half of all human cancers.


Assuntos
Genes Supressores de Tumor/fisiologia , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/genética , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Células MCF-7 , Mutação/genética , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA