RESUMO
Sustainable HIV remission after antiretroviral therapy (ART) withdrawal, or post-treatment control (PTC), remains a top priority for HIV treatment. We observed surprising PTC in an MHC-haplomatched cohort of MHC-M3+ SIVmac239+ Mauritian cynomolgus macaques (MCMs) initiated on ART at two weeks post-infection (wpi). None of the MCMs possessed MHC haplotypes previously associated with SIV control. For six months after ART withdrawal, we observed undetectable or transient viremia in seven of the eight MCMs, despite detecting replication competent SIV using quantitative viral outgrowth assays. In vivo depletion of CD8α+ cells induced rebound in all animals, indicating the observed PTC was mediated, at least in part, by CD8α+ cells. With intact proviral DNA assays, we found that MCMs had significantly smaller viral reservoirs two wpi than a cohort of identically infected rhesus macaques, a population that rarely develops PTC. We found a similarly small viral reservoir among six additional SIV+ MCMs in which ART was initiated at eight wpi, some of whom exhibited viral rebound. These results suggest that an unusually small viral reservoir is a hallmark among SIV+ MCMs. By evaluating immunological differences between MCMs that did and did not rebound, we identified that PTC was associated with a reduced frequency of CD4+ and CD8+ lymphocyte subsets expressing exhaustion markers. Together, these results suggest a combination of small reservoirs and immune-mediated virus suppression contribute to PTC in MCMs. Further, defining the immunologic mechanisms that engender PTC in this model may identify therapeutic targets for inducing durable HIV remission in humans.
Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Humanos , Animais , Macaca mulatta , Linfócitos T CD8-Positivos , Infecções por HIV/tratamento farmacológico , Macaca fascicularis , Carga Viral , Replicação Viral , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologiaRESUMO
Sustainable HIV remission after antiretroviral therapy (ART) withdrawal, or post-treatment control (PTC), remains a top priority for HIV treatment. We observed surprising PTC in an MHC-haplomatched cohort of MHC-M3+ SIVmac239+ Mauritian cynomolgus macaques (MCMs) initiated on ART at two weeks post-infection (wpi). For six months after ART withdrawal, we observed undetectable or transient viremia in seven of eight MCMs. In vivo depletion of CD8α+ cells induced rebound in all animals, indicating the PTC was mediated, at least in part, by CD8α+ cells. We found that MCMs had smaller acute viral reservoirs than a cohort of identically infected rhesus macaques, a population that rarely develops PTC. The mechanisms by which unusually small viral reservoirs and CD8α+ cell-mediated virus suppression enable PTC can be investigated using this MHC-haplomatched MCM model. Further, defining the immunologic mechanisms that engender PTC in this model may identify therapeutic targets for inducing durable HIV remission in humans.
RESUMO
Vaccine strategies aimed at eliciting human immunodeficiency virus (HIV)-specific CD8+ T cells are one major target of interest in HIV functional cure strategies. We hypothesized that CD8+ T cells elicited by therapeutic vaccination during antiretroviral therapy (ART) would be recalled and boosted by treatment with the interleukin 15 (IL-15) superagonist N-803 after ART discontinuation. We intravenously immunized four simian immunodeficiency virus-positive (SIV+) Mauritian cynomolgus macaques receiving ART with vesicular stomatitis virus (VSV), modified vaccinia virus Ankara strain (MVA), and recombinant adenovirus serotype 5 (rAd-5) vectors all expressing SIVmac239 Gag. Immediately after ART cessation, these animals received three doses of N-803. Four control animals received no vaccines or N-803. The vaccine regimen generated a high-magnitude response involving Gag-specific CD8+ T cells that were proliferative and biased toward an effector memory phenotype. We then compared cells elicited by vaccination (Gag specific) to cells elicited by SIV infection and unaffected by vaccination (Nef specific). We found that N-803 treatment enhanced the frequencies of both bulk and proliferating antigen-specific CD8+ T cells elicited by vaccination and the antigen-specific CD8+ T cells elicited by SIV infection. In sum, we demonstrate that a therapeutic heterologous prime-boost-boost (HPBB) vaccine can elicit antigen-specific effector memory CD8+ T cells that are boosted by N-803. IMPORTANCE While antiretroviral therapy (ART) can suppress HIV replication, it is not a cure. It is therefore essential to develop therapeutic strategies to enhance the immune system to better become activated and recognize virus-infected cells. Here, we evaluated a novel therapeutic vaccination strategy delivered to SIV+ Mauritian cynomolgus macaques receiving ART. ART was then discontinued and we delivered an immunotherapeutic agent (N-803) after ART withdrawal with the goal of eliciting and boosting anti-SIV cellular immunity. Immunologic and virologic analysis of peripheral blood and lymph nodes collected from these animals revealed transient boosts in the frequency, activation, proliferation, and memory phenotype of CD4+ and CD8+ T cells following each intervention. Overall, these results are important in educating the field of the transient nature of the immunological responses to this particular therapeutic regimen and the similar effects of N-803 on boosting T cells elicited by vaccination or elicited naturally by infection.
Assuntos
Linfócitos T CD8-Positivos , Vacinas contra a SAIDS , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Proliferação de Células , Macaca mulatta/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vacinação , Vaccinia virusRESUMO
Allogeneic hematopoietic stem cell transplants (allo-HSCTs) dramatically reduce HIV reservoirs in antiretroviral therapy (ART) suppressed individuals. However, the mechanism(s) responsible for these post-transplant viral reservoir declines are not fully understood. Therefore, we modeled allo-HSCT in ART-suppressed simian-human immunodeficiency virus (SHIV)-infected Mauritian cynomolgus macaques (MCMs) to illuminate factors contributing to transplant-induced viral reservoir decay. Thus, we infected four MCMs with CCR5-tropic SHIV162P3 and started them on ART 6-16 weeks post-infection (p.i.), maintaining continuous ART during myeloablative conditioning. To prevent graft-versus-host disease (GvHD), we transplanted allogeneic MHC-matched α/ß T cell-depleted bone marrow cells and prophylactically treated the MCMs with cyclophosphamide and tacrolimus. The transplants produced ~ 85% whole blood donor chimerism without causing high-grade GvHD. Consequently, three MCMs had undetectable SHIV DNA in their blood post-transplant. However, SHIV-harboring cells persisted in various tissues, with detectable viral DNA in lymph nodes and tissues between 38 and 62 days post-transplant. Further, removing one MCM from ART at 63 days post-transplant resulted in SHIV rapidly rebounding within 7 days of treatment withdrawal. In conclusion, transplanting SHIV-infected MCMs with allogeneic MHC-matched α/ß T cell-depleted bone marrow cells prevented high-grade GvHD and decreased SHIV-harboring cells in the blood post-transplant but did not eliminate viral reservoirs in tissues.
Assuntos
Doença Enxerto-Hospedeiro , Infecções por HIV , Transplante de Células-Tronco Hematopoéticas , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Transplante de Medula Óssea/efeitos adversos , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , HIV , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Macaca fascicularis , Receptores de Antígenos de Linfócitos T , Vírus da Imunodeficiência Símia/genéticaRESUMO
Allogeneic hematopoietic stem cell transplants can lead to dramatic reductions in human immunodeficiency virus (HIV) reservoirs. This effect is partially mediated by donor T cells recognizing lymphocyte-expressed minor histocompatibility antigens (mHAgs). The potential to mark malignant and latently infected cells for destruction makes mHAgs attractive targets for cellular immunotherapies. However, testing such HIV reservoir reduction strategies will likely require preclinical studies in non-human primates (NHPs). In this study, we used a combination of alloimmunization, whole exome sequencing, and bioinformatics to identify an mHAg in Mauritian cynomolgus macaques (MCMs). We mapped the minimal optimal epitope to a 10-mer peptide (SW10) in apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3C (APOBEC3C) and determined the major histocompatibility complex class I restriction element as Mafa-A1∗063, which is expressed in almost 90% of MCMs. APOBEC3C SW10-specific CD8+ T cells recognized immortalized B cells but not fibroblasts from an mHAg-positive MCM. These results provide a framework for identifying mHAgs in a non-transplant setting and suggest that APOBEC3C SW10 could be used as a model antigen to test mHAg-targeted therapies in NHPs.
Assuntos
Citidina Desaminase/imunologia , Macaca fascicularis/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologiaRESUMO
Chlamydiae are obligate intracellular Gram-negative bacterial pathogens that undergo an essential, but poorly understood, biphasic developmental cycle transitioning between the infectious elementary body and the replicative reticulate body. Ser/Thr/Tyr phosphorylation has been increasingly recognized for its role in regulating bacterial physiology. Chlamydia spp. encode two Hanks'-type kinases in addition to a type 2C protein phosphatase (PP2C; CppA) and appears capable of global protein phosphorylation. While these findings substantiate the importance of protein phosphorylation in Chlamydia, the physiological impact of protein phosphorylation remains enigmatic. In this study, we investigated the in vivo role of CppA by using recombinant protein point mutants and small-molecule inhibitors. Recombinant CppA (rCppA) amino acid point mutants based upon missense mutations identified in growth-deficient Chlamydia trachomatis strains exhibited reduced, but not a complete loss of, phosphatase activity toward p-nitrophenyl phosphate (pNPP) and phosphopeptides. To more directly explore the importance of CppA in chlamydial development, we implemented a chemical "knockout" approach using derivatives of 5,5'-methylenedisalicylic acid (MDSA). Several MDSA derivatives significantly reduced CppA activity in vitro and the growth of C. trachomatis L2, C. trachomatis D, and Chlamydia muridarum in a cell culture infection model. The inhibition of C. trachomatis L2 growth was more pronounced when treated at earlier infection time points, and the removal of the inhibitors after 12 h postinfection did not rescue progeny production. Our findings revealed that altered CppA activity reduces chlamydial growth and that CppA function is likely crucial for early differentiation events. Collectively, our findings further support the importance of the protein phosphorylation network in chlamydial development.IMPORTANCEChlamydia is a significant cause of disease in humans, including sexually transmitted infections, the ocular infection trachoma, and pneumonia. Despite the critical roles of protein phosphatases in bacterial physiology, their function in pathogenesis is less clear. Our findings demonstrate that CppA, a broad-specificity type 2C protein phosphatase (PP2C), is critical for chlamydial development and further substantiate reversible phosphorylation as a key regulatory mechanism in Chlamydia Additionally, our work highlights the potential of CppA to serve as a novel target for future therapeutic strategies and supports the feasibility of designing more potent PP2C phosphatase inhibitors for Chlamydia and other pathogenic bacteria.
Assuntos
Proteínas de Bactérias/genética , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/genética , Proteína Fosfatase 2C/antagonistas & inibidores , Proteína Fosfatase 2C/genética , Salicilatos/farmacologia , Animais , Proteínas de Bactérias/antagonistas & inibidores , Linhagem Celular , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Camundongos , Fosforilação/efeitos dos fármacosRESUMO
Chlamydia are Gram negative bacterial pathogens responsible for disease in humans and economically important domesticated animals. As obligate intracellular bacteria, they must gain entry into a host cell where they propagate within a parasitophorous organelle that serves as an interactive interface between the bacterium and the host. Nutrient acquisition, growth, and evasion of host defense mechanisms occur from this location. In addition to these cellular and bacterial dynamics, Chlamydia differentiate between two morphologically distinct forms, the elementary body and reticulate body, that are optimized for either extracellular or intracellular survival, respectively. The mechanisms regulating and mediating these diverse physiological events remain largely unknown. Reversible phosphorylation, including classical two-component signaling systems, partner switching mechanisms, and the more recently appreciated bacterial Ser/Thr/Tyr kinases and phosphatases, has gained increasing attention for its role in regulating important physiological processes in bacteria including metabolism, development, and virulence. Phosphorylation modulates these events via rapid and reversible modification of protein substrates leading to changes in enzyme activity, protein oligomerization, cell signaling, and protein localization. The characterization of several conserved chlamydial protein kinases and phosphatases along with phosphoproteome analysis suggest that Chlamydia are capable of global and growth stage-specific protein phosphorylation. This mini review will highlight the current knowledge of protein phosphorylation in Chlamydia and its potential role in chlamydial physiology and, consequently, virulence. Comparisons with other minimal genome intracellular bacterial pathogens also will be addressed with the aim of illustrating the importance of this understudied regulatory mechanism on pathogenesis and the principle questions that remain unanswered.