Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 20: 100627, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37122838

RESUMO

During the last few decades, thermoresponsive materials for modulating cell adhesion have been investigated for the application of tissue engineering. In this study, we developed thermoresponsive mixed polymer brushes consisting of poly(N-isopropylacrylamide) (PNIPAAm) and poly(N,N-dimethylaminopropylacrylamide) (PDMAPAAm). The mixed polymer brushes were prepared on a glass substrate via the reversible addition-fragmentation chain transfer polymerization of DMAPAAm and subsequent atom transfer radical polymerization of NIPAAm. The mixed polymer brushes grafted to glass exhibited increased cationic properties by increasing the grafted PDMAPAAm length. The shrinking and extension of PNIPAAm exposed and concealed PDMAPAAm, respectively, indicating that the surface cationic properties can be controlled by changing the temperature. At 37 â€‹°C, the prepared mixed polymer brushes enhanced cell adhesion through their electrostatic interactions with cells. They also exhibited various thermoresponsive adhesion and detachment properties using various types of cells, such as mesenchymal stem cells. Temperature-controlled cell adhesion and detachment behavior differed between cell types. Using the prepared mixed polymer brush, we separated MSCs from adipocytes and HeLa cells by simply changing the temperature. Thus, the thermoresponsive mixed polymer brushes may be used to separate mesenchymal stem cells from their differentiated or contaminant cells by altering the temperature.

2.
Colloids Surf B Biointerfaces ; 220: 112928, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257279

RESUMO

Adipose-derived mesenchymal stem cells (ADSCs) have beneficial effects in cell transplantation therapy; these cells are collected from adipose tissue using low-invasive methods. However, to prepare ADSCs for cell therapy, a cell separation method that neither involves modification of the cell surface nor causes loss of cell activity is needed. Here, we aimed to develop ADSC separation columns using thermoresponsive cationic block copolymer brush-grafted beads as packing materials. The block copolymer brush was formed by a bottom cationic segment, poly(N,N-dimethylaminopropylacrylamide) (PDMAPAAm), and an upper thermoresponsive segment, poly(N-isopropylacrylamide) (PNIPAAm), and was grafted in two atom transfer radical polymerization reactions. The copolymer brush-grafted silica beads were packed into a column. An ADSC suspension was introduced into the columns at 37 °C and adsorbed on the copolymer brush-modified beads through electrostatic and hydrophobic interactions with the PDMAPAAm and PNIPAAm segments, respectively. The adsorbed ADSCs eluted from the column by lowering the temperature to 4 °C. In contrast, most Jurkat and vascular endothelial cells eluted at 37 °C, because of the relatively weaker electrostatic interactions with the block copolymer brush compared to ADSCs. Using the prepared column, a mixture of ADSCs and Jurkat cells was separated by changing the column temperature. The recovered ADSCs exhibited cell activity. The developed cell separation column may be useful for isolating ADSCs without cell surface modification, while maintaining cell activity.


Assuntos
Células-Tronco Mesenquimais , Dióxido de Silício , Humanos , Dióxido de Silício/química , Temperatura , Células Endoteliais , Propriedades de Superfície , Polímeros/química , Cátions , Tecido Adiposo
3.
Biomater Sci ; 9(21): 7054-7064, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34296234

RESUMO

Cell therapy using mesenchymal stem cells (MSCs) is used as effective regenerative treatment. Cell therapy requires effective cell separation without cell modification and cellular activity reduction. In this study, we developed a temperature-modulated mesenchymal stem cell separation column. A temperature-responsive cationic block copolymer, poly(N,N-dimethylaminopropylacrylamide)-b-poly(N-isopropylacrylamide)(PDMAPAAm-b-PNIPAAm) brush with various cationic copolymer compositions, was grafted onto silica beads via two-step atom transfer radical polymerization. Using the packed beads, the elution behavior of the MSCs was observed. At 37 °C, the MSCs were adsorbed onto the column via both hydrophobic and electrostatic interactions with the PNIPAAm and PDMAPAAm segments of the copolymer brush, respectively. By reducing the temperature to 4 °C, the adsorbed MSCs were eluted from the column by reducing the hydrophobic and electrostatic interactions attributed to the hydration and extension of the PNIPAAm segment of the block copolymer brush. From the temperature-modulated adsorption and elution behavior of MSCs, a suitable DMAPAAm composition of the block copolymer brush was determined. Using the column, a mixture of MSC and BM-CD34+ cells was separated by simply changing the column temperature. The column was used to purify the MSCs, with purities of 78.2%, via a temperature change from 37 °C to 4 °C. Additionally, the cellular activity of the MSCs was retained throughout the column separation step. Overall, the obtained results show that the developed column is useful for MSC separation without cell modification and cellular activity reduction.


Assuntos
Células-Tronco Mesenquimais , Separação Celular , Polimerização , Polímeros , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA