Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Cancer Res Commun ; 4(7): 1881-1893, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38984877

RESUMO

Endothelial Notch signaling is critical for tumor angiogenesis. Notch1 blockade can interfere with tumor vessel function but causes tissue hypoxia and gastrointestinal toxicity. Notch4 is primarily expressed in endothelial cells, where it may promote angiogenesis; however, effective therapeutic targeting of Notch4 has not been successful. We developed highly specific Notch4-blocking antibodies, 6-3-A6 and humanized E7011, allowing therapeutic targeting of Notch4 to be assessed in tumor models. Notch4 was expressed in tumor endothelial cells in multiple cancer models, and endothelial expression was associated with response to E7011/6-3-A6. Anti-Notch4 treatment significantly delayed tumor growth in mouse models of breast, skin, and lung cancers. Enhanced tumor inhibition occurred when anti-Notch4 treatment was used in combination with chemotherapeutics. Endothelial transcriptomic analysis of murine breast tumors treated with 6-3-A6 identified significant changes in pathways of vascular function but caused only modest change in canonical Notch signaling. Analysis of early and late treatment timepoints revealed significant differences in vessel area and perfusion in response to anti-Notch4 treatment. We conclude that targeting Notch4 improves tumor growth control through endothelial intrinsic mechanisms. SIGNIFICANCE: A first-in-class anti-Notch4 agent, E7011, demonstrates strong antitumor effects in murine tumor models including breast carcinoma. Endothelial Notch4 blockade reduces perfusion and vessel area.


Assuntos
Anticorpos Neutralizantes , Neovascularização Patológica , Receptor Notch4 , Animais , Receptor Notch4/metabolismo , Camundongos , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Neovascularização Patológica/metabolismo , Feminino , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo
2.
J Immunother Cancer ; 12(1)2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242717

RESUMO

BACKGROUND: Lenvatinib plus pembrolizumab demonstrated clinically meaningful benefit in patients with previously treated advanced endometrial carcinoma in Study 111/KEYNOTE-146 (NCT02501096). In these exploratory analyses from this study, we evaluated the associations between clinical outcomes and gene expression signature scores and descriptively summarized response in biomarker subpopulations defined by tumor mutational burden (TMB) and DNA variants for individual genes of interest. METHODS: Patients with histologically confirmed metastatic endometrial carcinoma received oral lenvatinib 20 mg once daily plus intravenous pembrolizumab 200 mg every 3 weeks for 35 cycles. Archived formalin-fixed paraffin-embedded tissue was obtained from all patients. T-cell-inflamed gene expression profile (TcellinfGEP) and 11 other gene signatures were evaluated by RNA sequencing. TMB, hotspot mutations in PIK3CA (oncogene), and deleterious mutations in PTEN and TP53 (tumor suppressor genes) were evaluated by whole-exome sequencing (WES). RESULTS: 93 and 79 patients were included in the RNA-sequencing-evaluable and WES-evaluable populations, respectively. No statistically significant associations were observed between any of the RNA-sequencing signature scores and objective response rate or progression-free survival. Area under the receiver operating characteristic curve values for response ranged from 0.39 to 0.54; all 95% CIs included 0.50. Responses were seen regardless of TMB (≥175 or <175 mutations/exome) and mutation status. There were no correlations between TcellinfGEP and TMB, TcellinfGEP and microvessel density (MVD), or MVD and TMB. CONCLUSIONS: This analysis demonstrated efficacy for lenvatinib plus pembrolizumab regardless of biomarker status. Results from this study do not support clinical utility of the evaluated biomarkers. Further investigation of biomarkers for this regimen is warranted. TRIAL REGISTRATION NUMBER: NCT02501096.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias do Endométrio , Compostos de Fenilureia , Quinolinas , Feminino , Humanos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Biomarcadores Tumorais/genética , RNA/uso terapêutico
3.
Transl Res ; 260: 46-60, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37353110

RESUMO

Head and neck cancers, which include oral squamous cell carcinoma (OSCC) as a major subsite, exhibit cellular plasticity that includes features of an epithelial-mesenchymal transition (EMT), referred to as partial-EMT (p-EMT). To identify molecular mechanisms contributing to OSCC plasticity, we performed a multiphase analysis of single cell RNA sequencing (scRNAseq) data from human OSCC. This included a multiresolution characterization of cancer cell subgroups to identify pathways and cell states that are heterogeneously represented, followed by casual inference analysis to elucidate activating and inhibitory relationships between these pathways and cell states. This approach revealed signaling networks associated with hierarchical cell state transitions, which notably included an association between ß-catenin-driven CREB-binding protein (CBP) activity and mTORC1 signaling. This network was associated with subpopulations of cancer cells that were enriched for markers of the p-EMT state and poor patient survival. Functional analyses revealed that ß-catenin/CBP induced mTORC1 activity in part through the transcriptional regulation of a raptor-interacting protein, chaperonin containing TCP1 subunit 5 (CCT5). Inhibition of ß-catenin-CBP activity through the use of the orally active small molecule, E7386, reduced the expression of CCT5 and mTORC1 activity in vitro, and inhibited p-EMT-associated markers and tumor development in a murine model of OSCC. Our study highlights the use of multiresolution network analyses of scRNAseq data to identify targetable signals for therapeutic benefit, thus defining an underappreciated association between ß-catenin/CBP and mTORC1 signaling in head and neck cancer plasticity.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Humanos , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proteína de Ligação a CREB/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Via de Sinalização Wnt
4.
Mol Cancer Ther ; 22(1): 12-24, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36279567

RESUMO

Innate and adaptive resistance to cancer therapies, such as chemotherapies, molecularly targeted therapies, and immune-modulating therapies, is a major issue in clinical practice. Subpopulations of tumor cells expressing the receptor tyrosine kinase AXL become enriched after treatment with antimitotic drugs, causing tumor relapse. Elevated AXL expression is closely associated with drug resistance in clinical samples, suggesting that AXL plays a pivotal role in drug resistance. Although several molecules with AXL inhibitory activity have been developed, none have sufficient activity and selectivity to be clinically effective when administered in combination with a cancer therapy. Here, we report a novel small molecule, ER-851, which is a potent and highly selective AXL inhibitor. To investigate resistance mechanisms and identify driving molecules, we conducted a comprehensive gene expression analysis of chemoresistant tumor cells in mouse xenograft models of genetically engineered human lung cancer and human triple-negative breast cancer. Consistent with the effect of AXL knockdown, cotreatment of ER-851 and antimitotic drugs produced an antitumor effect and prolonged relapse-free survival in the mouse xenograft model of human triple-negative breast cancer. Importantly, when orally administered to BALB/c mice, this compound did not induce retinal toxicity, a known side effect of chronic MER inhibition. Together, these data strongly suggest that AXL is a therapeutic target for overcoming drug resistance and that ER-851 is a promising candidate therapeutic agent for use against AXL-expressing antimitotic-resistant tumors.


Assuntos
Antimitóticos , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Receptor Tirosina Quinase Axl , Antimitóticos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Bioorg Med Chem Lett ; 48: 128247, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34271070

RESUMO

Axl and Mer are members of the TAM (Tyro3-Axl-Mer) family of receptor tyrosine kinases. Previously, we reported that enzyme-mediated inhibition of Mer by an Axl/Mer dual inhibitor led to retinal toxicity in mice, whereas selective Axl inhibition by compound 1 did not. On the other hand, compound 1 showed low membrane permeability. Here, we designed and synthesized a novel series of 5,6,7,8-tetrahydropyrido[3,4-d]pyrimidine derivatives and evaluated their Axl and Mer inhibitory activities, leading to identification of ER-001259851-000 as a potent and selective Axl inhibitor with drug-likeness and a promising pharmacokinetic profile in mice.


Assuntos
Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Piridinas/farmacologia , Pirimidinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , c-Mer Tirosina Quinase/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Humanos , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/síntese química , Piridinas/química , Pirimidinas/síntese química , Pirimidinas/química , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase Axl
6.
Mol Cancer Res ; 19(9): 1510-1521, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34039647

RESUMO

Immune checkpoint blockade (ICB) therapy has substantially improved the outcomes of patients with many types of cancers, including renal cell carcinoma (RCC). Initially studied as monotherapy, immunotherapy-based combination regimens have improved the clinical benefit achieved by ICB monotherapy and have revolutionized RCC treatment. While biomarkers like PD-L1 and tumor mutational burden (TMB) are FDA approved as biomarkers for ICB monotherapy, there are no known biomarkers for combination immunotherapies. Here, we describe the clinical outcomes and genomic determinants of response from a phase Ib/II clinical trial on patients with advanced RCC evaluating the efficacy of lenvatinib, a multi-kinase inhibitor mainly targeting VEGFR and FGFR plus pembrolizumab, an anti-PD1 immunotherapy. Concurrent treatment with lenvatinib and pembrolizumab resulted in an objective response rate of 79% (19/24) and tumor shrinkage in 96% (23/24) of patients. While tumor mutational burden (TMB) did not predict for clinical benefit, germline HLA-I diversity strongly impacted treatment efficacy. Specifically, HLA-I evolutionary divergence (HED), which measures the breadth of a patient's immunopeptidome, was associated with both improved clinical benefit and durability of response. Our results identify lenvatinib plus pembrolizumab as a highly active treatment strategy in RCC and reveal HLA-I diversity as a critical determinant of efficacy for this combination. HED also predicted better survival in a separate cohort of patients with RCC following therapy with anti-PD-1-based combination therapy. IMPLICATIONS: These findings have substantial implications for RCC therapy and for understanding immunogenetic mechanisms of efficacy and warrants further investigation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Variação Genética , Antígenos HLA/genética , Neoplasias Renais/patologia , Idoso , Anticorpos Monoclonais Humanizados/administração & dosagem , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Feminino , Seguimentos , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Masculino , Pessoa de Meia-Idade , Compostos de Fenilureia/administração & dosagem , Prognóstico , Quinolinas/administração & dosagem , Taxa de Sobrevida
7.
Bioorg Med Chem ; 39: 116137, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33930844

RESUMO

Axl and Mer are a members of the TAM (Tyro3-Axl-Mer) family of receptor tyrosine kinases, which, when activated, can promote tumor cell survival, proliferation, migration, invasion, angiogenesis, and tumor-host interactions. Chronic inhibition of Mer leads to retinal toxicity in mice. Therefore, successful development of an Axl targeting agent requires ensuring that it is safe for prolonged treatment. Here, to clarify whether enzyme inhibition of Mer by a small molecule leads to retinal toxicity in mice, we designed and synthesized Axl/Mer inhibitors and Axl-selective inhibitors. We identified an Axl/Mer dual inhibitor 28a, which showed retinal toxicity at a dose of 100 mg/kg in mice. Subsequent derivatization of a pyridine derivative led to the discovery of a pyrimidine derivative, 33g, which selectively inhibited the activity of Axl over Mer without retinal toxicity at a dose of 100 mg/kg in mice. Additionally, the compound displayed in vivo anti-tumor effects without influencing body weight in a Ba/F3-Axl isogenic subcutaneous model.


Assuntos
Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Animais , Camundongos , Modelos Animais , Inibidores de Proteínas Quinases/química , Retina/efeitos dos fármacos , Análise Espectral/métodos , Relação Estrutura-Atividade , Receptor Tirosina Quinase Axl
8.
Cancer Res ; 81(4): 1052-1062, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33408116

RESUMO

The Wnt/ß-catenin signaling pathway plays crucial roles in embryonic development and the development of multiple types of cancer, and its aberrant activation provides cancer cells with escape mechanisms from immune checkpoint inhibitors. E7386, an orally active selective inhibitor of the interaction between ß-catenin and CREB binding protein, which is part of the Wnt/ß-catenin signaling pathway, disrupts the Wnt/ß-catenin signaling pathway in HEK293 and adenomatous polyposis coli (APC)-mutated human gastric cancer ECC10 cells. It also inhibited tumor growth in an ECC10 xenograft model and suppressed polyp formation in the intestinal tract of ApcMin /+ mice, in which mutation of Apc activates the Wnt/ß-catenin signaling pathway. E7386 demonstrated antitumor activity against mouse mammary tumors developed in mouse mammary tumor virus (MMTV)-Wnt1 transgenic mice. Gene expression profiling using RNA sequencing data of MMTV-Wnt1 tumor tissue from mice treated with E7386 showed that E7386 downregulated genes in the hypoxia signaling pathway and immune responses related to the CCL2, and IHC analysis showed that E7386 induced infiltration of CD8+ cells into tumor tissues. Furthermore, E7386 showed synergistic antitumor activity against MMTV-Wnt1 tumor in combination with anti-PD-1 antibody. In conclusion, E7386 demonstrates clear antitumor activity via modulation of the Wnt/ß-catenin signaling pathway and alteration of the tumor and immune microenvironments, and its antitumor activity can be enhanced in combination with anti-PD-1 antibody. SIGNIFICANCE: These findings demonstrate that the novel anticancer agent, E7386, modulates Wnt/ß-catenin signaling, altering the tumor immune microenvironment and exhibiting synergistic antitumor activity in combination with anti-PD-1 antibody.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/patologia , Fragmentos de Peptídeos/metabolismo , Pirazinas/farmacologia , Sialoglicoproteínas/metabolismo , Triazinas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Genes APC , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Ligação Proteica/efeitos dos fármacos , Pirazinas/uso terapêutico , Sialoglicoproteínas/antagonistas & inibidores , Triazinas/uso terapêutico , Via de Sinalização Wnt/genética , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , beta Catenina/antagonistas & inibidores
9.
Sci Rep ; 10(1): 2939, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076044

RESUMO

Anti-vascular endothelial growth factor (VEGF) therapy shows antitumor activity against various types of solid cancers. Several resistance mechanisms against anti-VEGF therapy have been elucidated; however, little is known about the mechanisms by which the acquired resistance arises. Here, we developed new anti-VEGF therapy-resistant models driven by chronic expression of the mouse VEGFR2 extracellular domain fused with the human IgG4 fragment crystallizable (Fc) region (VEGFR2-Fc). In the VEGFR2-Fc-expressing resistant tumors, we demonstrated that the FGFR2 signaling pathway was activated, and pericytes expressing high levels of FGF2 were co-localized with endothelial cells. Lenvatinib, a multiple tyrosine kinase inhibitor including VEGFR and FGFR inhibition, showed marked antitumor activity against VEGFR2-Fc-expressing resistant tumors accompanied with a decrease in the area of tumor vessels and suppression of phospho-FGFR2 in tumors. Our findings reveal the key role that intercellular FGF2 signaling between pericytes and endothelial cells plays in maintaining the tumor vasculature in anti-VEGF therapy-resistant tumors.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Fator 2 de Crescimento de Fibroblastos/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Transdução de Sinais , Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos , Modelos Biológicos , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Biochem Biophys Res Commun ; 513(1): 1-7, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30944079

RESUMO

Lenvatinib inhibits VEGF- and FGF-driven angiogenesis, and proliferation of tumor cells with activated FGF signaling pathways in preclinical models, and we previously demonstrated antitumor activity in human HCC xenograft tumor models. Here, we examined the inhibitory activity of lenvatinib against FGF-driven survival of human HCC cell lines. First, we conducted a histological analysis of FGF19-overexpressing Hep3B2.1-7 xenograft tumors collected from mice treated with lenvatinib. Second, we examined the effects of pharmacological inhibition on survival of cultured HCC cells with an activated FGF signaling pathway under nutrient-starved culture condition to mimic tumor microenvironments induced by angiogenesis inhibition. In the first analysis, area of histological focal necrosis was greater in Hep3B2.1-7 xenograft tumors with the lenvatinib treatment than that after the treatment with sorafenib, which does not inhibit FGFRs. Lenvatinib and E7090 (a selective FGFR1-3 inhibitor), but not sorafenib, induced death of Hep3B2.1-7, and another FGF19 overexpressing HuH-7 cells. Lenvatinib and E7090 decreased phosphorylation of downstream molecules of the FGF signaling pathway (such as FRS2, Erk, and p38 MAPK), and induced PARP cleavage, even under limited nutrients. PD0325901, MEK inhibitor, caused the same changes in HCC cells as those described above for lenvatinib and E7090. These results reveal that the FGF signaling pathway through MAPK cascades plays an important role in survival of HCC cell lines with an activated FGF signaling pathway under limited nutrients, and FGFR-MAPK cascades likely contribute to survival of HCC cells with an activated FGF signaling pathway under tumor microenvironments with limited nutrients, where tumor angiogenesis is inhibited.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Compostos de Fenilureia/uso terapêutico , Quinolinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
11.
Cancer Invest ; 37(4-5): 185-198, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31006280

RESUMO

High expression of vascular endothelial growth factor (VEGF) in patients with hepatocellular carcinoma (HCC) is associated with poor prognosis. Here, we investigated the antitumor activity of lenvatinib, a multiple receptor tyrosine kinase inhibitor, in VEGF-overexpressing HCC models. In human umbilical vein endothelial cells, lenvatinib showed potent inhibitory activities against VEGF-induced proliferation and VEGF/basic fibroblast growth factor-induced tube formation. In VEGF-overexpressing HCC xenograft models, characterized by aggressive tumor growth and hypervascularity, lenvatinib had significant antitumor and antiangiogenic activities. These results suggest that potent activity of lenvatinib against VEGF signaling underlies its antitumor and antiangiogenic activities in the hypervascular HCC models.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Quinolinas/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/patologia , Camundongos , Neovascularização Patológica/patologia , Compostos de Fenilureia/uso terapêutico , Quinolinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Cancer Ther ; 18(5): 947-956, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30926637

RESUMO

Anaplastic thyroid carcinoma (ATC) is a rare but aggressive undifferentiated tumor that frequently metastasizes to the brain. The multiple kinase inhibitor lenvatinib and sorafenib have been approved to treat unresectable differentiated thyroid cancer, and lenvatinib has been approved in Japan to treat ATC. This study compared the effects of lenvatinib and sorafenib in mouse models of central nervous system metastases of ATC. Immunodeficient mice were inoculated with ATC cells, and the effects of lenvatinib and sorafenib were evaluated in subcutaneous- and brain metastasis-mimicking models. Drug distribution was evaluated by imaging tandem mass spectrometry (ITMS). Neither lenvatinib nor sorafenib affected the viability of ATC cell lines, whereas both inhibited VEGF secretion by ATC cells. In the subcutaneous tumor model, both lenvatinib and sorafenib inhibited growth and were associated with reduced tumor microvessel density. In the brain metastasis-mimicking model, lenvatinib, but not sorafenib, inhibited the growth of ATC cells and reduced microvessel density in brain lesions. ITMS showed that lenvatinib was well-distributed in both subcutaneous and brain lesions, whereas the distribution of sorafenib was lower in brain than in subcutaneous lesions. These results demonstrate that lenvatinib is well-distributed in mouse models of ATC, and inhibited the growth of ATC brain lesions predominantly by inhibiting angiogenesis, suggesting that lenvatinib is highly potent against ATC brain metastases.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Metástase Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Compostos de Fenilureia/farmacologia , Quinolinas/farmacologia , Sorafenibe/farmacologia , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia
13.
PLoS One ; 14(2): e0212513, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30811474

RESUMO

Lenvatinib is a multiple receptor tyrosine kinase inhibitor targeting mainly vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) receptors. We investigated the immunomodulatory activities of lenvatinib in the tumor microenvironment and its mechanisms of enhanced antitumor activity when combined with a programmed cell death-1 (PD-1) blockade. Antitumor activity was examined in immunodeficient and immunocompetent mouse tumor models. Single-cell analysis, flow cytometric analysis, and immunohistochemistry were used to analyze immune cell populations and their activation. Gene co-expression network analysis and pathway analysis using RNA sequencing data were used to identify lenvatinib-driven combined activity with anti-PD-1 antibody (anti-PD-1). Lenvatinib showed potent antitumor activity in the immunocompetent tumor microenvironment compared with the immunodeficient tumor microenvironment. Antitumor activity of lenvatinib plus anti-PD-1 was greater than that of either single treatment. Flow cytometric analysis revealed that lenvatinib reduced tumor-associated macrophages (TAMs) and increased the percentage of activated CD8+ T cells secreting interferon (IFN)-γ+ and granzyme B (GzmB). Combination treatment further increased the percentage of T cells, especially CD8+ T cells, among CD45+ cells and increased IFN-γ+ and GzmB+ CD8+ T cells. Transcriptome analyses of tumors resected from treated mice showed that genes specifically regulated by the combination were significantly enriched for type-I IFN signaling. Pretreatment with lenvatinib followed by anti-PD-1 treatment induced significant antitumor activity compared with anti-PD-1 treatment alone. Our findings show that lenvatinib modulates cancer immunity in the tumor microenvironment by reducing TAMs and, when combined with PD-1 blockade, shows enhanced antitumor activity via the IFN signaling pathway. These findings provide a scientific rationale for combination therapy of lenvatinib with PD-1 blockade to improve cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Compostos de Fenilureia/administração & dosagem , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Quinolinas/administração & dosagem , Animais , Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Fatores Imunológicos/administração & dosagem , Interferons/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias Experimentais/genética , Inibidores de Proteínas Quinases/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
14.
Cancer Sci ; 109(12): 3993-4002, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30447042

RESUMO

Angiogenesis inhibitors such as lenvatinib and sorafenib, and an immune checkpoint inhibitor (ICI), nivolumab, are used for anticancer therapies against advanced hepatocellular carcinoma (HCC). Combination treatments comprising angiogenesis inhibitors plus ICIs are promising options for improving clinical benefits in HCC patients, and clinical trials are ongoing. Here, we investigated the antitumor and immunomodulatory activities of lenvatinib (a multiple receptor tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor 1-3, fibroblast growth factor receptor 1-4, platelet-derived growth factor receptor α, KIT and RET) and the combined antitumor activity of lenvatinib plus anti-programmed cell death 1 (PD-1) antibody in the Hepa1-6 mouse HCC syngeneic model. We found that the antitumor activities of lenvatinib and sorafenib were not different in immunodeficient mice, but lenvatinib showed more potent antitumor activity than sorafenib in immunocompetent mice. The antitumor activity of lenvatinib was greater in immunocompetent mice than in immunodeficient mice and was attenuated by CD8+ T cell depletion. Treatment with lenvatinib plus anti-PD-1 antibody resulted in more tumor regression and a higher response rate compared with either treatment alone in immunocompetent mice. Single-cell RNA sequencing analysis demonstrated that treatment with lenvatinib with or without anti-PD-1 antibody decreased the proportion of monocytes and macrophages population and increased that of CD8+ T cell populations. These data suggest that lenvatinib has immunomodulatory activity that contributes to the antitumor activity of lenvatinib and enhances the antitumor activity in combination treatment with anti-PD-1 antibody. Combination treatment of lenvatinib plus anti-PD-1 antibody therefore warrants further investigation against advanced HCC.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Compostos de Fenilureia/administração & dosagem , Quinolinas/administração & dosagem , Sorafenibe/administração & dosagem , Animais , Antineoplásicos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Imunocompetência , Imunomodulação , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Camundongos , Compostos de Fenilureia/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Quinolinas/farmacologia , Análise de Sequência de RNA , Análise de Célula Única , Sorafenibe/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Anticancer Res ; 38(6): 3375-3385, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29848686

RESUMO

BACKGROUND: Eribulin is used in many countries to treat patients with advanced breast cancer or liposarcoma and exerts in vivo anticancer activity under monotherapy conditions against various human tumor xenograft models. Here, eribulin in combination with mechanistically different anticancer agents was evaluated. MATERIALS AND METHODS: Eribulin was combined with cytotoxic agents (capecitabine, carboplatin, cisplatin, doxorubicin, gemcitabine) or targeted agents (bevacizumab, BKM-120, E7449, erlotinib, everolimus, lenvatinib, palbociclib) in tumor xenograft models of breast cancer, melanoma, non-small cell lung cancer (NSCLC), and ovarian cancer. RESULTS: Across nearly all models, eribulin with either cytotoxic or targeted agents demonstrated combination activity, defined as the activity demonstrably greater than that of either agent alone. Combination activity was absent only with doxorubicin (MDA-MB-435 model) and with lenvatinib (NCI-H1975 model), both of which responded to the agents as monotherapy. CONCLUSION: Eribulin has combination activity with multiple agents from different mechanistic classes in several human cancer models, including breast, NSCLC, ovarian, and melanoma.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Células A549 , Animais , Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Furanos/administração & dosagem , Humanos , Cetonas/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Células MCF-7 , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Neoplasias/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
16.
Cancer Med ; 7(6): 2641-2653, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29733511

RESUMO

Unresectable hepatocellular carcinoma (uHCC) is one of the most lethal and prevalent cancers worldwide, and current systemic therapeutic options for uHCC are limited. Lenvatinib, a multiple receptor tyrosine kinase inhibitor targeting vascular endothelial growth factor receptors (VEGFRs) and fibroblast growth factor receptors (FGFRs), recently demonstrated a treatment effect on overall survival by statistical confirmation of noninferiority to sorafenib in a phase 3 study of uHCC. Here, we investigated mechanisms underlying the antitumor activity of lenvatinib in preclinical HCC models. In vitro proliferation assay of nine human HCC cell lines showed that lenvatinib selectively inhibited proliferation of FGF signal-activated HCC cells including FGF19-expressing Hep3B2.1-7. Lenvatinib suppressed phosphorylation of FRS2, a substrate of FGFR1-4, in these cells in a concentration-dependent manner. Lenvatinib inhibited in vivo tumor growth in Hep3B2.1-7 and SNU-398 xenografts and decreased phosphorylation of FRS2 and Erk1/2 within the tumor tissues. Lenvatinib also exerted antitumor activity and potently reduced tumor microvessel density in PLC/PRF/5 xenograft model and two HCC patient-derived xenograft models. These results suggest that lenvatinib has antitumor activity consistently across diverse HCC models, and that targeting of tumor FGF signaling pathways and anti-angiogenic activity underlies its antitumor activity against HCC tumors.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neovascularização Patológica/metabolismo , Compostos de Fenilureia/farmacologia , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
SLAS Discov ; 23(2): 154-163, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28846466

RESUMO

Ghrelin O-acyl transferase (GOAT; MBOAT4) catalyzes O-acylation at serine-3 of des-acyl ghrelin. Acyl ghrelin is secreted by stomach X/A-like cells and plays a role in appetite and metabolism. Therefore, GOAT has been expected to be a novel antiobesity target because it is responsible for acyl ghrelin production. Here, we report homogeneous time-resolved fluorescence (HTRF) and enzyme-linked immunosorbent assay (ELISA) methods utilizing human GOAT-expressing microsomes as a novel high-throughput assay system for the discovery of hit compounds and optimization of lead compounds. Hit compounds exemplified by compound A (2-[(2,4-dichlorobenzyl)sulfanyl]-1,3-benzoxazole-5-carboxylic acid) were identified by high-throughput screening using the HTRF assay and confirmed to have GOAT inhibitory activity using the ELISA. Based on the hit compound information, the novel lead compound (compound B, (4-chloro-6-{[2-methyl-6-(trifluoromethyl)pyridin-3-yl]methoxy}-1-benzothiophen-3-yl)acetic acid) was synthesized and exhibited potent GOAT inhibition with oral bioavailability. Both the hit compound and lead compound showed octanoyl-CoA competitive inhibitory activity. Moreover, these two compounds decreased acyl ghrelin production in the stomach of mice after their oral administration. These novel findings demonstrate that GOAT is a druggable target, and its inhibitors are promising antiobesity drugs.


Assuntos
Aciltransferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Grelina/metabolismo , Acil Coenzima A/metabolismo , Acilação/efeitos dos fármacos , Administração Oral , Animais , Disponibilidade Biológica , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacocinética , Ensaios de Triagem em Larga Escala/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Estômago/efeitos dos fármacos
18.
Anticancer Res ; 37(12): 6629-6638, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29187438

RESUMO

BACKGROUND/AIM: Tumor angiogenesis induced by vascular endothelial growth factor (VEGF) and/or fibroblast growth factor (FGF) plays an important role in tumor growth, metastasis, and drug resistance. However, the characteristics of tumor vessels derived from these angiogenic factors have not been fully explored. MATERIALS AND METHODS: To functionally examine tumor vessels, we developed in vivo VEGF- and FGF-induced tumor blood vessel models. We performed immunohistochemistry and Hoechst perfusion assay to elucidate histopathological differences between the derived tumor vessels. To kinetically understand tumor perfusion, we employed radiolabeled PEGylated liposomes. RESULTS: While tumor vessel density was substantially increased by enhanced expression levels of VEGF and FGF, permeability of VEGF-driven tumor vessels was significantly higher than that of FGF-driven ones, the latter demonstrating an increased number of pericyte-covered vessels. Accordingly, we observed an increased tumor retention of the PEGylated liposomes in the VEGF-driven tumor. CONCLUSION: Our in vivo models of tumor vessel demonstrate the frequency of pericyte coverage and tumor perfusion levels as major functional differences between VEGF- and FGF-driven tumor vessels.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias/irrigação sanguínea , Neovascularização Patológica/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Fatores de Crescimento de Fibroblastos/genética , Humanos , Imuno-Histoquímica , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neovascularização Patológica/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Sorafenibe , Fator A de Crescimento do Endotélio Vascular/genética , Gencitabina
19.
J Med Chem ; 60(21): 8963-8981, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29023121

RESUMO

The discovery and optimization of Δ-5 desaturase (D5D) inhibitors are described. Investigation of the 1,3-oxazolidin-2-one scaffold was inspired by a pharmacophore model constructed from the common features of several hit compounds, resulting in the identification of 3,5-diphenyl-1,3-oxazolidin-2-one 5h as a novel lead showing potent in vitro activity. Subsequent optimization focused on the modification of two metabolic sites, which provided (4S,5S)-5i, a derivative with improved metabolic stability. Moreover, adding a substituent into the upper phenyl moiety further enhanced the intrinsic activity, which led to the discovery of 5-[(4S,5S)-5-(4fluorophenyl)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]benzene-1,3-dicarbonitrile (4S,5S)-5n, endowed with excellent D5D binding affinity, cellular activity, and high oral bioavailability in a mouse. It exhibited robust in vivo hepatic arachidonic acid/dihomo-γ-linolenic acid ratio reduction (a target engagement marker) in an atherosclerosis mouse model. Finally, an asymmetric synthetic procedure for this compound was established.


Assuntos
Ácidos Graxos Dessaturases/antagonistas & inibidores , Oxazolidinonas/farmacologia , Administração Oral , Animais , Ácido Araquidônico/metabolismo , Aterosclerose/tratamento farmacológico , Disponibilidade Biológica , Dessaturase de Ácido Graxo Delta-5 , Descoberta de Drogas/métodos , Fígado/metabolismo , Camundongos , Oxazolidinonas/síntese química , Oxazolidinonas/metabolismo , Oxazolidinonas/farmacocinética , Relação Estrutura-Atividade
20.
Cancer Sci ; 108(11): 2273-2280, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28869796

RESUMO

We previously reported that eribulin mesylate (eribulin), a tubulin-binding drug (TBD), could remodel tumor vasculature (i.e. increase tumor vessels and perfusion) in human breast cancer xenograft models. However, the role of this vascular remodeling in antitumor effects is not fully understood. Here, we investigated the effects of eribulin-induced vascular remodeling on antitumor activities in multiple human cancer xenograft models. Microvessel densities (MVD) were evaluated by immunohistochemistry (CD31 staining), and antitumor effects were examined in 10 human cancer xenograft models. Eribulin significantly increased MVD compared to the controls in six out of 10 models with a correlation between enhanced MVD levels and antitumor effects (R2  = 0.54). Because of increased MVD, we next used radiolabeled liposomes to examine whether eribulin treatment would result in increased tumoral accumulation levels of these macromolecules and, indeed, we found that eribulin, unlike vinorelbine (another TBD) enhanced them. As eribulin increased accumulation of radiolabeled liposomes, we postulated that this treatment might enhance the antitumor effect of Doxil (a liposomal anticancer agent) and facilitate recruitment of immune cells into the tumor. As expected, eribulin enhanced antitumor activity of Doxil in a post-erlotinib treatment H1650 (PE-H1650) xenograft model. Furthermore, infiltrating CD11b-positive immune cells were significantly increased in multiple eribulin-treated xenografted tumors, and natural killer (NK) cell depletion reduced the antitumor effects of eribulin. These findings suggest a contribution of the immune cells for antitumor activities of eribulin. Taken together, our results suggest that vascular remodeling induced by eribulin acts as a microenvironment modulator and, consequently, this alteration enhanced the antitumor effects of eribulin.


Assuntos
Furanos/administração & dosagem , Cetonas/administração & dosagem , Neoplasias/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Animais , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Feminino , Células HCT116 , Humanos , Camundongos , Neoplasias/patologia , Polietilenoglicóis/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA