Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 315(1): C1-C9, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29537866

RESUMO

Physiological functions of type 3 ryanodine receptors (RyR3) in smooth muscle (SM) tissues are not well understood, in spite of their wide expression. However, the short isoform of RyR3 is known to be a dominant-negative variant (DN-RyR3), which may negatively regulate functions of both RyR2 and full-length (FL) RyR3 by forming hetero-tetramers. Here, functional roles of RyR3 in the regulation of Ca2+ signaling in mesenteric artery SM cells (MASMCs) were examined using RyR3 homozygous knockout mice (RyR3-/-). Quantitative PCR analyses suggested that the predominant RyR3 subtype in MASMs from wild-type mice (RyR3+/+) was DN-RyR3. In single MASMCs freshly isolated from RyR3-/-, the EC50 of caffeine to induce Ca2+ release was lower than that in RyR3+/+ myocytes. The amplitude and frequency of Ca2+ sparks and spontaneous transient outward currents in MASMCs from RyR3-/- were all larger than those from RyR3+/+. Importantly, mRNA and functional expressions of voltage-dependent Ca2+ channel and large-conductance Ca2+-activated K+ (BK) channel in MASMCs from RyR3-/- were identical to those from RyR3+/+. However, in the presence of BK channel inhibitor, paxilline, the pressure rises induced by BayK8644 in MA vascular beds of RyR3-/- were significantly larger than in those of RyR3+/+. This indicates that the negative feedback effects of BK channel activity on intracellular Ca2+ signaling was enhanced in RyR3-/-. Thus, RyR3, and, in fact, mainly DN-RyR3, via a complex with RyR2 suppresses Ca2+ release and indirectly regulated membrane potential by reducing BK channel activity in MASMCs and presumably can affect the regulation of intrinsic vascular tone.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Artérias Mesentéricas/metabolismo , Músculo Liso Vascular/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo
2.
Pflugers Arch ; 469(2): 313-326, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27866274

RESUMO

Ryanodine receptor type 3 (RyR3) is expressed in myometrial smooth muscle cells (MSMCs). The short isoform of RyR3 is a dominant negative variant (DN-RyR3) and negatively regulates the functions of RyR2 and full-length (FL)-RyR3. DN-RyR3 has been suggested to function as a major RyR3 isoform in non-pregnant (NP) mouse MSMCs, and FL-RyR3 may also be upregulated during pregnancy (P). This increase in the FL-RyR3/DN-RyR3 ratio may contribute to the strong contractions by MSMCs for parturition. In the present study, spontaneous contractions by the myometrium in NP and P mice were highly susceptible to nifedipine but were not affected by ryanodine. Ca2+ image analyses under a voltage clamp revealed that the influx of Ca2+ through voltage-dependent Ca2+ channels did not cause the release of Ca2+ from the sarcoplasmic reticulum (SR). Cytosolic Ca2+ concentrations ([Ca2+]cyt) in MSMCs were not affected by caffeine. Despite the abundant expression of large conductance Ca2+-activated K+ channels in MSMCs, spontaneous transient outward currents were not observed in the resting state because of the substantive lack of Ca2+ sparks. Quantitative PCR and Western blot analyses indicated that DN-RyR3 was strongly expressed in the NP myometrium, while the expression of FL-RyR3 and DN-RyR3 was markedly reduced in the P myometrium. The messenger RNA (mRNA) expression of RyR2 and RyR1 was negligible in the NP and P myometria. Moreover, RyR3 knockout mice may become pregnant and deliver normally. Thus, we concluded that none of the RyR subtypes, including RyR3, play a significant role in the regulation of [Ca2+]cyt in or contractions by mouse MSMCs regardless of pregnancy.


Assuntos
Contração Muscular/fisiologia , Miométrio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miométrio/efeitos dos fármacos , Potássio/metabolismo , Gravidez , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Rianodina/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA