Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 99(3): 883-5, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15708810

RESUMO

A zinc(II) complex having planar tridentate ligand, bzimpy, where bzimpy is 2,6-bis(benzimidazol-2-yl) pyridine was synthesized and characterized by UV, NMR, infrared spectroscopy and fluorescence spectra. The zinc complex acts as dibasic acids, in which N-H protons on benzimidazole moieties are responsible for a deprotonation site. Both the absorption spectra and reduction potentials are strongly dependent on the solution pH, which leads to the basis of a proton-induced molecular switch. The binding of this complex with calf thymus DNA has been investigated by absorption, luminescence titrations and viscosity measurements. The results suggest that the zinc(II) complex intercalates into DNA base pairs via the ligand bzimp.


Assuntos
Benzimidazóis/química , DNA/efeitos dos fármacos , Substâncias Intercalantes/síntese química , Compostos Organometálicos/síntese química , Piridinas/química , Zinco/química , Pareamento de Bases , DNA/metabolismo , Substâncias Intercalantes/farmacologia , Ligantes , Estrutura Molecular , Compostos Organometálicos/farmacologia , Prótons , Análise Espectral
2.
Anal Sci ; 20(4): 711-6, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15116974

RESUMO

Four useful polypyridine iridium(III) complexes in the form of [IrCl2L2]+ were prepared and their spectroscopic and electrochemical properties as well as X-ray crystallography were investigated. The ligands used were L = 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, 4,4'-diphenyl-2,2'-bipyridine, 1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, and 2,2'-biquinoline. Synthetic methods were developed by a sequential ligand-replacement, which occurred in the reaction vessel using a microwave oven. All complexes showed that LUMOs are based on the pi-system contribution of the polypyridine ligand for [IrCl2(bpy)2]+, [IrCl2(dmbpy)2]+, [IrCl2(dpbpy)2]+, [IrCl2(phen)2]+, [IrCl2(dpphen)2]+ and [IrCl2(bqn)2]+. The HOMOs are also localized on the polypyridine ligand in the iridium complexes. It was found that [IrCl2L2]+ emits intense phosphorescence at room temperature. In particular, the use of dpbpy as ancillary ligands extends the lifetime (660 ns) of the 3(pi-pi*) excited states of Ir(III) polypyridine complexes. The complex [IrCl2(bqn)2]+ with electron acceptor substituents shows a large red-shift to 622 nm. It is noticed that iridium polypyridine complexes show intense emissions at various colors, such as yellow for [IrCl2(dmbpy)2]+ and red for [IrCl2(bqn)2]+ which can be applied to photosensitizers. The spectroscopic and electrochemical details are also reported herein.

3.
Anal Sci ; 20(12): 1639-44, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15636508

RESUMO

Hexafluorophosphate salts of mononuclear complexes [Ru(II)Cl(L)(terpy)]+ (L = dmbpy (1); dpbpy (2), sambpy (3), and dpp (7), and binuclear complexes [Ru(II)2Cl2(dpp)(terpy)2]2+ (8) and [Ir(III)Ru(II)Cl2(dpp)(terpy)2]3+ (9) were prepared and characterized. Abbreviations of the ligands are bpy = 2,2'-bipyridine, dmbpy = 4,4'-dimethyl-2,2'-bipyridine, dpbpy = 4,4'-diphenyl-2,2'-bipyridine, dpp = 2,3-bis(2-pyridyl)pyrazine, sambpy = 4,4'-bis((S)-(+)-alpha-1-phenylethylamido)-2,2'-bipyridine, and terpy = 2,2':6',2''-terpyridine. The absorption spectra of 8 and 9 are dominated by ligand-centered bands in the UV region and by metal-to-ligand charge-transfer bands in the visible region. The details of their spectroscopic and electrochemical properties were investigated. In both binuclear complexes, it has been found that the HOMO is based on the Ru metal, and LUMO is dpp-based. [Ir(III)Ru(II)Cl2(dpp)(terpy)2]3+, indicating intense emission at room temperature, and a lifetime of 154 ns. The long lifetime of this bimetallic chromophore makes it a useful component in the design of supramolecular complexes.

4.
Anal Sci ; 19(5): 761-5, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12769380

RESUMO

Seven useful mixed-ligand complexes in the form of [Ir(terpy)(L)Cl]2+ were prepared and their spectroscopic and electrochemical properties were investigated. The ligands used were terpy = 2,2':6',2''-terpyridine, L = 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, 4,4'-diphenyl-2,2'-bipyridine, 1,10-phenanthroline, 5-phenyl-1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, 2,3-bis(2-pyridyl)pyrazine. Synthetic methods were developed by a sequential ligand-replacement which occurred in the reaction vessel using a microwave oven. All complexes showed that LUMOs are based on the pi-system contribution of the terpyridine ligand for [Ir(terpy)(bpy)Cl]2+, [Ir(terpy)(dmbpy)Cl]2+, [Ir(terpy)(dpbpy)Cl]2+, [Ir(terpy)(phen)Cl]2+, [Ir(terpy)(dpphen)Cl]2+ and [Ir(terpy)(phphen)Cl]2+. On the other hand, the LUMO in the [Ir(terpy)(bppz)Cl]2+ complex is localized on the pi-system of the bppz ligand, whereas the HOMOs in the iridium complexes are localized on the terpyridine ligand. It was found that Ir(terpy)(L)Cl emits in a fluid solution at room temperature. The ancillary ligands, such as terpy and bpy, have been explored to extend the lifetime of the triplet 3(pi-pi') excited states of Ir(III) terpyridine complexes. Ir(III) terpyridine units with an electron donor (dmbpy) or electron acceptor substituents (terpy, dpbpy, phphen, dpphen and bppz) are found to decrease the energy of the 3LC states for use as photosensitizer molecular components in supramolecular devices. The spectroscopic and electrochemical details are also reported herein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA