Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 650: 123671, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38065345

RESUMO

In the last few years, twin-screw wet granulation (TSWG) has become one of the key continuous pharmaceutical unit operations. Despite the many studies that have been performed, only little is known about the effect of the starting material properties on the stepwise granule formation along the length of the twin-screw granulator (TSG) barrel. Hence, this study obtained a detailed understanding of the effect of formulation properties (i.e., Active Pharmaceutical Ingredient (API) properties, formulation blend particle size distribution and formulation drug load) and process settings on granule formation in TSWG. An experimental set-up was used allowing the collection of granules at the different TSG compartments. Granules were characterized in terms of granule size, shape, binder liquid and API distributions. Liquid-to-solid (L/S) ratio was the only TSG process parameter impacting the granule size and shape evolution. Particle size and flow properties (e.g., flow rate index) had an important effect on the granule size and shape changes whereas water-related properties (e.g., water binding capacity and solubility) became influential at the last TSG compartments. The API solubility and L/S ratio were found to have a major impact on the distribution of binder liquid over the different granule size fractions. In the first TSG compartment (i.e., wetting compartment), the distribution of the API in the granules was influenced by its solubility in the granulation liquid.


Assuntos
Parafusos Ósseos , Água , Solubilidade , Tamanho da Partícula , Molhabilidade , Composição de Medicamentos , Tecnologia Farmacêutica
2.
Int J Pharm ; 646: 123493, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37813175

RESUMO

This paper presents an application case of model-based design of experiments for the continuous twin-screw wet granulation and fluid-bed drying sequence. The proposed framework consists of three previously developed models. Here, we are testing the applicability of previously published unit operation models in this specific part of the production line to a new active pharmaceutical ingredient. Firstly, a T-shaped partial least squares regression model predicts d-values of granules after wet granulation with different process settings. Then, a high-resolution full granule size distribution is computed by a hybrid population balance and partial least squares regression model. Lastly, a mechanistic model of fluid-bed drying simulates drying time and energy efficiency, using the outputs of the first two models as a part of the inputs. In the application case, good operating conditions were calculated based on material and formulation properties as well as the developed process models. The framework was validated by comparing the simulation results with three experimental results. Overall, the proposed framework enables a process designer to find appropriate process settings with a less experimental workload. The framework combined with process knowledge reduced 73.2% of material consumption and 72.3% of time, especially in the early process development phase.


Assuntos
Parafusos Ósseos , Dessecação , Composição de Medicamentos/métodos , Tamanho da Partícula , Simulação por Computador , Dessecação/métodos , Tecnologia Farmacêutica/métodos , Comprimidos
3.
Int J Pharm ; 646: 123481, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37805145

RESUMO

This work presents a granule size prediction approach applicable to diverse formulations containing new active pharmaceutical ingredients (APIs) in continuous twin-screw wet granulation. The approach consists of a surrogate selection method to identify similar materials with new APIs and a T-shaped partial least squares (T-PLS) model for granule size prediction across varying formulations and process conditions. We devised a surrogate material selection method, employing a combination of linear pre-processing and nonlinear classification algorithms, which effectively identified suitable surrogates for new materials. Using only material properties obtained through four characterization methods, our approach demonstrated its predictive prowess. The selected surrogate methods were seamlessly integrated with our developed T-PLS model, which was meticulously validated for high-dose formulations involving three new APIs. When surrogating new APIs based on Gaussian process classification, we achieved the lowest prediction errors, signifying the method's robustness. The predicted d-values were within the range of uncertainty bounds for all cases, except for d90 of API C. Notably, the approach offers a direct and efficient solution for early-phase formulation and process development, considerably reducing the need for extensive experimental work. By relying on just four material characterization methods, it streamlines the research process while maintaining a high degree of accuracy.


Assuntos
Parafusos Ósseos , Tecnologia Farmacêutica , Análise dos Mínimos Quadrados , Tamanho da Partícula , Preparações Farmacêuticas , Composição de Medicamentos , Comprimidos
4.
Int J Pharm ; 645: 123391, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37696346

RESUMO

Twin-screw wet granulation (TSWG) stands out as a promising continuous alternative to conventional batch fluid bed- and high shear wet granulation techniques. Despite its potential, the impact of raw material properties on TSWG processability remains inadequately explored. Furthermore, the absence of supportive models for TSWG process development with new active pharmaceutical ingredients (APIs) adds to the challenge. This study tackles these gaps by introducing four partial least squares (PLS) models that approximate both the applicable liquid-to-solid (L/S) ratio range and resulting granule attributes (i.e., granule size and friability) based on initial material properties. The first two PLS models link the lowest and highest applicable L/S ratio for TSWG, respectively, with the formulation blend properties. The third and fourth PLS models predict the granule size and friability, respectively, from the starting API properties and applied L/S ratio for twin-screw wet granulation. By analysing the developed PLS models, water-related material properties (e.g., solubility, wettability, dissolution rate), as well as density and flow-related properties (e.g., flow function coefficient), were found to be impacting the TSWG processability. In addition, the applicability of the developed PLS models was evaluated by using them to propose suitable L/S ratio ranges (i.e., resulting in granules with the desired properties) for three new APIs and related formulations followed by an experimental validation thereof. Overall, this study helped to better understand the effect of raw material properties upon TSWG processability. Moreover, the developed PLS models can be used to propose suitable TSWG process settings for new APIs and hence reduce the experimental effort during process development.


Assuntos
Parafusos Ósseos , Tecnologia Farmacêutica , Tamanho da Partícula , Solubilidade , Molhabilidade , Composição de Medicamentos/métodos , Tecnologia Farmacêutica/métodos , Comprimidos
5.
Int J Pharm ; 641: 123010, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37169104

RESUMO

In recent years, continuous twin-screw wet granulation (TSWG) is gaining increasing interest from the pharmaceutical industry. Despite the many publications on TSWG, only a limited number of studies focused on granule porosity, which was found to be an important granule property affecting the final tablet quality attributes, e.g. dissolution. In current study, the granule porosity along the length of the twin-screw granulator (TSG) barrel was evaluated. An experimental set-up was used allowing the collection of granules at the different TSG compartments. The effect of active pharmaceutical ingredient (API) properties on granule porosity was evaluated by using six formulations with a fixed composition but containing APIs with different physical-chemical properties. Furthermore, the importance of TSWG process parameters liquid-to-solid (L/S) ratio, mass feed rate and screw speed for the granule porosity was evaluated. Several water-related properties as well as particle size, density and flow properties of the API were found to have an important effect on granule porosity. While the L/S ratio was confirmed to be the dictating TSWG process parameter, granulator screw speed was also found to be an important process variable affecting granule porosity. This study obtained crucial information on the effect of material properties and process parameters on granule porosity (and granule formation) which can be used to accelerate TSWG process and formulation development.


Assuntos
Indústria Farmacêutica , Tecnologia Farmacêutica , Porosidade , Tamanho da Partícula , Parafusos Ósseos , Comprimidos , Composição de Medicamentos
6.
Int J Pharm ; 640: 123040, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37172629

RESUMO

In the pharmaceutical industry, twin-screw wet granulation has become a realistic option for the continuous manufacturing of solid drug products. Towards the efficient design, population balance models (PBMs) have been recognized as a tool to compute granule size distribution and understand physical phenomena. However, the missing link between material properties and the model parameters limits the swift applicability and generalization of new active pharmaceutical ingredients (APIs). This paper proposes partial least squares (PLS) regression models to assess the impact of material properties on PBM parameters. The parameters of the compartmental one-dimensional PBMs were derived for ten formulations with varying liquid-to-solid ratios and connected with material properties and liquid-to-solid ratios by PLS models. As a result, key material properties were identified in order to calculate it with the necessary accuracy. Size- and moisture-related properties were influential in the wetting zone whereas density-related properties were more dominant in the kneading zones.


Assuntos
Composição de Medicamentos , Indústria Farmacêutica , Composição de Medicamentos/métodos , Análise dos Mínimos Quadrados , Tamanho da Partícula , Tecnologia Farmacêutica/métodos
7.
Sci Rep ; 11(1): 16416, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385518

RESUMO

Coronavirus disease 2019 (COVID-19) has spread throughout the world. The prediction of the number of cases has become essential to governments' ability to define policies and take countermeasures in advance. The numbers of cases have been estimated using compartment models of infectious diseases such as the susceptible-infected-removed (SIR) model and its derived models. However, the required use of hypothetical future values for parameters, such as the effective reproduction number or infection rate, increases the uncertainty of the prediction results. Here, we describe our model for forecasting future COVID-19 cases based on observed data by considering the time delay (tdelay). We used machine learning to estimate the future infection rate based on real-time mobility, temperature, and relative humidity. We then used this calculation with the susceptible-exposed-infectious-removed (SEIR) model to forecast future cases with less uncertainty. The results suggest that changes in mobility affect observed infection rates with 5-10 days of time delay. This window should be accounted for in the decision-making phase especially during periods with predicted infection surges. Our prediction model helps governments and medical institutions to take targeted early countermeasures at critical decision points regarding mobility to avoid significant levels of infection rise.


Assuntos
COVID-19/diagnóstico , COVID-19/epidemiologia , Número Básico de Reprodução , COVID-19/transmissão , Suscetibilidade a Doenças , Previsões , Política de Saúde/tendências , Humanos , Japão/epidemiologia , Aprendizado de Máquina , Modelos Estatísticos , SARS-CoV-2/isolamento & purificação , Incerteza
8.
Int J Pharm ; 579: 119160, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32081803

RESUMO

This paper aims to determine key parameters that affect tablet quality and productivity in continuous tablet manufacturing. Experiments were performed based on design of experiments using a continuous high-shear granulator and ethenzamide as the active pharmaceutical ingredient. To guide a systematic and comprehensive parameter analysis, a parameter framework was defined that comprised five input parameters on raw material properties and process parameters, 11 intermediate parameters on granule properties, and 11 output parameters on tablet quality and productivity. The interrelationships were analyzed statistically and were described as matrix functions. The liquid/solid ratio was the key parameter that affected circularity, density, and flowability as the granule properties, and disintegration and dissolution as the tablet quality. The maximum acceptable manufacturing rate that governs productivity was also affected by the liquid/solid ratio. Circularity was found to affect disintegration and dissolution. This result was specific to the setup of the study, but suggested development opportunities for a new process analytical technology system/quality-by-design application based on circularity. In addition, practical findings were obtained as follows: (1) high-speed manufacturing favored a lower liquid/solid ratio, and (2) high circularity slowed down disintegration/dissolution. This obtained knowledge will enhance the applicability of continuous technology in an actual manufacturing environment.


Assuntos
Composição de Medicamentos/métodos , Salicilamidas/química , Comprimidos/química , Tecnologia Farmacêutica/métodos , Tamanho da Partícula , Solubilidade
9.
Int J Pharm ; 559: 210-219, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30682448

RESUMO

This paper compares batch and continuous technologies in terms of product quality and process performance in pharmaceutical tablet manufacturing using ethenzamide as the active pharmaceutical ingredient. Batch and continuous processes using wet granulation were investigated by performing experiments on the scale of 5 and up to 100 kg/lot, using the same raw materials. Three technologies were tested and compared: (i) batch technology using fluidized bed granulation, (ii) batch technology using high shear granulation, (iii) continuous technology using high shear granulation. In the full-scale experiment, in all three technologies including continuous technology, the quality of the tablets fulfilled the target values regarding hardness, active pharmaceutical ingredient content, and dissolution. The granules produced by different technologies, however, presented varying attributes regarding granule size distribution, loose bulk density, or scanning electron microscope images. The process performance, more specifically the yield, was slightly better for batch technologies than for the continuous technology, mainly due to losses in the start-up operation. Notably, this study has shown that continuous technology, which is generally believed to not entail scale-up procedures, could in fact, require parameter adjustment for prolonged operation. The results provided suggestions for improvements to implement large-scale continuous technologies in the pharmaceutical industry.


Assuntos
Salicilamidas/química , Comprimidos/química , Química Farmacêutica/métodos , Excipientes/química , Dureza/efeitos dos fármacos , Tamanho da Partícula , Solubilidade/efeitos dos fármacos , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA