Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 150(2): 238-51, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23782392

RESUMO

Four cDNA clones (SlArf/Xyl1-4) encoding α-l-arabinofuranosidase/ß-xylosidase belonging to glycoside hydrolase family 3 were obtained from tomato (Solanum lycopersicum) fruit. SlArf/Xyl1 was expressed in various organs. Its level was particularly high in flower and leaves but low in fruit. SlArf/Xyl3 was highly expressed in flower. On the contrary, SlArf/Xyl2 and 4 were expressed in early developmental stage in various organs. Comparison with SlArf/Xyl4, SlArf/Xyl2 expression was observed in earlier stages. The active recombinant proteins were obtained by using BY-2 tobacco (Nicotiana tabacum) suspension cultured cells. The SlArf/Xyl1 and 2 recombinant proteins showed a bi-functional activity of α-l-arabinofuranosidase/ß-xylosidase while the SlArf/Xyl4 protein possessed a ß-xylosidase activity predominantly. Neither enzyme activities were detected for the SlArf/Xyl3 protein under the same conditions. Although SlArf/Xyl2 possessed a bi-functional activity, it preferentially hydrolyzed arabinosyl residues from tomato hemicellulosic polysaccharides. Antisense suppression of SlArf/Xyl2 resulted in no apparent changes in the enzyme activities, monosaccharide composition or fruit phenotype. Increment of a family 51 α-l-arabinofuranosidase expression rather than that of family 3 resulted in a restoring the activity in SlArf/Xyl2-suppressed fruit. The ability of recombinant SlArf/Xyl2 to hydrolyze both arabinan and arabinoxylan is nearly identical to that of α-l-arabinofuranosidases belonging to family 51. Our results suggested that BY-2 cells are a useful expression system for obtaining active cell wall hydrolyzing enzymes. In addition, an α-l-arabinofuranosidase activity derived from SlArf/Xyl2 would be essential in young organ development and the action of the enzyme could be restored by the other enzyme belonging to a different family under a defective condition.


Assuntos
Glicosídeo Hidrolases/metabolismo , Nicotiana/citologia , Nicotiana/genética , RNA Antissenso/metabolismo , Solanum lycopersicum/enzimologia , Xilosidases/metabolismo , Arabinose/metabolismo , Células Cultivadas , Clonagem Molecular , DNA Complementar/genética , Frutas/enzimologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Isoenzimas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Fenótipo , Filogenia , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade por Substrato , Suspensões , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA