RESUMO
Unique spin-spin (magnetic) interactions, ring-size effects on ground-state spin multiplicity, and in-plane aromaticity has been found in localized 1,3-diradicals embedded in curved benzene structures such as cycloparaphenylene (CPP). In this study, we characterized the magnetic interactions in a tetraradical consisting of two localized 1,3-diradical units connected by p-quaterphenyl within a curved CPP skeleton by electron paramagnetic resonance (EPR) spectroscopy and quantum chemical calculations. Persistent triplet species with zero-field splitting parameters similar to those of a triplet 1,3-diphenylcyclopentane-1,3-diyl diradical were observed by continuous wave (CW) or pulsed X-band EPR measurements. The quintet state derived from the ferromagnetic interaction between the two triplet diradical moieties was not detected at 20â K under glassy matrix conditions. At the B3LYP/6-31G(d) level of theory, the singlet state was lower in energy than the triplet and quintet states. These findings will aid in the development of open-shell species for material science application.
RESUMO
We describe the structural and magnetic properties of a tetranuclear [2 × 2] Co4 grid complex containing a ditopic arylazo ligand. At low temperatures and in solution the complex is comprised of Co3+ and singly reduced trianion-radical ligands. In the solid state we demonstrate the presence of valence tautomerization via variable temperature magnetic susceptibility experiments and powder-pattern EPR spectroscopy. Valence tautomerism in polynuclear complexes is very rare and to our knowledge is unprecedented in [2 × 2] grid complexes.
RESUMO
The function of proteins is linked to their conformations that can be resolved with several high-resolution methods. However, only a few methods can provide the temporal order of intermediates and conformational changes, with each having its limitations. Here, we combine pulsed electron-electron double resonance spectroscopy with a microsecond freeze-hyperquenching setup to achieve spatiotemporal resolution in the angstrom range and lower microsecond time scale. We show that the conformational change of the Cα-helix in the cyclic nucleotide-binding domain of the Mesorhizobium loti potassium channel occurs within about 150 µs and can be resolved with angstrom precision. Thus, this approach holds great promise for obtaining 4D landscapes of conformational changes in biomolecules.
Assuntos
Elétrons , Congelamento , Mesorhizobium/química , Canais de Potássio/metabolismo , Modelos Moleculares , Canais de Potássio/química , Conformação Proteica , Análise Espectral , Fatores de TempoRESUMO
Trityl and nitroxide radicals are connected by π-topologically controlled aryl linkers, generating genuinely g-engineered biradicals. They serve as a typical model for biradicals in which the exchange (J) and hyperfine interactions compete with the g-difference electronic Zeeman interactions. The magnetic properties underlying the biradical spin Hamiltonian for solution, including J's, have been determined by multifrequency CW-ESR and 1H ENDOR spectroscopy and compared with those obtained by quantum chemical calculations. The experimental J values were in good agreement with the quantum chemical calculations. The g-engineered biradicals have been tested as a prototype for AWG (Arbitrary Wave Generator)-based spin manipulation techniques, which enable GRAPE (GRAdient Pulse Engineering) microwave control of spins in molecular magnetic resonance spectroscopy for use in molecular spin quantum computers, demonstrating efficient signal enhancement of specific weakened hyperfine signals. Dynamic nuclear polarization (DNP) effects of the biradicals for 400 MHz nuclear magnetic resonance signal enhancement have been examined, giving efficiency factors of 30 for 1H and 27.8 for 13C nuclei. The marked DNP results show the feasibility of these biradicals for hyperpolarization.
RESUMO
We herein report the synthetic, structural, theoretical, and magnetic studies on three isostructural complexes, [M(L)2(CH3OH)2] (M = Mn (Mn), Fe (Fe), and Co (Co); HL = 2,6-bis(pyrazole-1-yl)pyridine-4-carboxylic acid). From single crystal X-ray crystallography, it is found that the complexes crystallized in the same space group (C2/c) and had seven-coordinate pentagonal bipyramidal structures. From direct current (dc) and alternating current (ac) magnetic susceptibility measurements, Mn and Co were found to undergo field-induced slow magnetic relaxation with two relaxation pathways. To elucidate the origin of the slow magnetic relaxation phenomena of Mn, electron paramagnetic resonance (EPR) measurements and theoretical calculations were performed. The EPR measurements were performed on polycrystalline powder samples, and the following parameters were obtained by simulating the EPR data: giso = 2.00 and small zero field splitting parameter D = -0.13 cm-1. To the best of our knowledge, this is the first example of a seven-coordinate mononuclear Mn(ii) complex undergoing slow magnetic relaxation.
RESUMO
Pulsed EPR dipolar spectroscopy (PDS) offers several methods for measuring dipolar coupling and thus the distance between electron-spin centers. To date, PDS measurements to metal centers were limited to ions that adhere to the high-field approximation. Here, the PDS methodology is extended to cases where the high-field approximation breaks down on the example of the high-spin Fe3+ /nitroxide spin-pair. First, the theory developed by Maryasov etâ al. (Appl. Magn. Reson. 2006, 30, 683-702) was adapted to derive equations for the dipolar coupling constant, which revealed that the dipolar spectrum does not only depend on the length and orientation of the interspin distance vector with respect to the applied magnetic field but also on its orientation to the effective g-tensor of the Fe3+ ion. Then, it is shown on a model system and a heme protein that a PDS method called relaxation-induced dipolar modulation enhancement (RIDME) is well-suited to measuring such spectra and that the experimentally obtained dipolar spectra are in full agreement with the derived equations. Finally, a RIDME data analysis procedure was developed, which facilitates the determination of distance and angular distributions from the RIDME data. Thus, this study enables the application of PDS to for example, the highly relevant class of high-spin Fe3+ heme proteins.
RESUMO
The fictitious spin-1/2 (effective spin-1/2) Hamiltonian approach has been the putative method to analyze the conventional fine-structure/hyperfine ESR spectra of high spin metallocomplexes with sizable zero-field splitting (ZFS) tensors since the early 1950s, and the approach gives salient principal geff-values far from g = 2 without explicitly affording their ZFS values in most cases. The experimental geff-values thus determined, however, never agree with those (gtrue-values) of the true principal g-tensors, which are obtainable from reliable quantum chemical calculations. We have recently derived exact or extremely accurate analytical expressions for the geff/gtrue relationships for the spin quantum number S's up to S = 7/2 (T. Yamane et al., Phys. Chem. Chem. Phys., 2017, 19, 24769-24791). In this work, we have removed the limitation of the collinearity between g- and ZFS tensors and derived the generalized geff/gtrue relationships. To illustrate the usefulness of the present approach, we have revisited important typical high spin systems with large ZFS values such as picket fence metalloporphyrins with MnII (S = 5/2) (Q. Yu et al., Dalton Trans., 2015, 44, 9382-9390), a 6th ligand coordinated porphyrin with FeIII (S = 5/2) (Y. Ide et al., Dalton Trans., 2017, 46, 242-249) and a pseudo-octahedral CoII (S = 3/2)(hfac)2 complex (D. V. Korchagin et al., Dalton Trans., 2017, 46, 7540-7548), completing the ESR spectral and magnetic susceptibility analyses and gaining significant physical insights into their electronic structures. The off-principal axis extra peaks overlooked in the documented spectra of the picket fence MnII porphyrins have fully been assigned, affording their accurate true g-, hyperfine and ZFS tensors, for the first time. For the CoII complex, the occurrence of the non-collinearity between the g- and ZFS tensors has been discussed by using the generalized geff/gtrue relationships. We have attempted to carry out reliable DFT-based and ab initio quantum chemical calculations of their magnetic tensors, in which spin-orbit couplings are incorporated, reproducing the experimental true tensors. We emphasize that the incorporation of multi-reference nature in the electron configuration is important to interpret the magnetic tensors for the CoII complex.
RESUMO
Site-directed spin labeling is a powerful tool for investigating the conformation and dynamics of biomacromolecules such as RNA. Here we introduce a spin labeling strategy based on click chemistry in solution that, in combination with enzymatic ligation, allows highly efficient labeling of complex and long RNAs with short reaction times and suppressed RNA degradation. With this approach, a 34-nucleotide aptamer domain of the preQ1 riboswitch and an 81-nucleotide TPP riboswitch aptamer could be labeled with two labels in several positions. We then show that conformations of the preQ1 aptamer and its dynamics can be monitored in the absence and presence of Mg2+ and a preQ1 ligand by continuous wave electron paramagnetic resonance spectroscopy at room temperature and pulsed electron-electron double resonance spectroscopy (PELDOR or DEER) in the frozen state.
Assuntos
RNA/química , RNA/isolamento & purificação , Riboswitch/genética , Marcadores de Spin , Aptâmeros de Nucleotídeos/química , Química Click , Espectroscopia de Ressonância de Spin Eletrônica , Conformação de Ácido Nucleico , Pirimidinonas/química , Pirróis/química , RNA/genéticaRESUMO
The fictitious spin-1/2 Hamiltonian approach is the putative method to analyze the fine-structure/hyperfine ESR spectra of high spin metallocomplexes having sizable zerofield splitting (ZFS), thus giving salient principal g-values far from around g = 2 without explicitly providing their ZFS parameters in most cases. Indeed, the significant departure of the g-values from g = 2 is indicative of the occurrence of their high spin states, but naturally they never agree with true g-values acquired by quantum chemical calculations such as sophisticated DFT or ab initio MO calculations. In this work, we propose facile approaches to determine the magnetic tensors of high spin metallocomplexes having sizable ZFS, instead of performing advanced high-field/high-frequency ESR spectroscopy. We have revisited analytical expressions for the relationship between effective g-values and true principal g-values for high spins. The useful analytical formulas for the geff-gtrue relationships are given for S's up to 7/2. The genuine Zeeman perturbation formalism gives the exact solutions for S = 3/2, and for higher S's it is much more accurate than the pseudo-Zeeman perturbation approach documented so far (A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Metal Ions, 1970; J. R. Pilbrow, J. Magn. Reson., 1978, 31, 479; F. Trandafir et al., Appl. Magn. Reson., 2007, 31, 553; M. Fittipaldi et al., J. Phys. Chem. B, 2008, 112, 3859), in which the E(Sx2 - Sy2) term is putatively treated to the second order. To show the usefulness of the present approach, we exploit FeIII(Cl)OEP (S = 5/2) (OEP: 2,3,7,8,12,13,17,18-octaethylporphyrin) and CoIIOEP (S = 3/2) well magnetically diluted in the diamagnetic host crystal lattice of NiIIOEP. The advantage of single-crystal ESR spectroscopy lies in the fact that the molecular information on the principal axes of the magnetic tensors is crucial in comparing with reliable theoretical results. In high spin states of metallocomplexes with sizable ZFS in pseudo-octahedral symmetry, their fine-structure ESR transitions for the principal z-axis orientation appear in the lower field far from g = 2 at the X-band, disagreeing with the putative intuitive picture obtained using relevant ESR spectroscopy. A ReIII,IV dinuclear complex in a mixed valence state exemplifies the cases, whose fine-structure/hyperfine ESR spectra of the neat crystals have been analyzed in their principal-axis system. The DFT-based/ab initio MO calculations of the magnetic tensors for all the high spin entities in this work were carried out.
RESUMO
Utilization of triplets is important for preparing organic light-emitting diodes with high efficiency. Very recently, both electrophosphorescence and electrofluorescence could be observed at room temperature for thienyl-substituted phenazines without any heavy metals ( Ratzke et al. J. Phys. Chem. Lett. , 2016 , 7 , 4802 ). It was found that the phosphorescence efficiency depends on the orientation of fused thiophenes. In this work, the thienyl-substituted phenazines are investigated in more detail by time-resolved electron paramagnetic resonance (EPR) and quantum chemical calculations. Spin dynamics, zero-field splitting constants, and electron-spin structures of the excited triplet states for the metal-free room-temperature triplet emitters are correlated with phosphorescence efficiency. Complete active space self-consistent field (CASSCF) calculations clearly show that the electron spin density distributions of the first excited triplet states are strongly affected by the molecular geometry. For the phosphorescent molecules, the electron spins are localized on the phenazine unit, in which the sulfur atom of the fused thiophene points upward. The electron spins are delocalized onto the thiophene unit just by changing the orientation of the fused thiophenes from upward to downward, resulting in the suppression of phosphorescence. Time-resolved EPR measurements and time-dependent density functional theory (TD-DFT) calculations demonstrate that the electron spins delocalized onto the thiophene unit lead to the acceleration of nonradiative decays, in conjunction with the narrowing of the singlet-triplet energy gap.
RESUMO
Metal-free dual singlet-triplet organic light-emitting diode (OLED) emitters can provide direct insight into spin statistics, spin correlations and spin relaxation phenomena, through a comparison of fluorescence to phosphorescence intensity. Remarkably, such materials can also function at room temperature, exhibiting phosphorescence lifetimes of several milliseconds. Using electroluminescence, quantum chemistry, and electron paramagnetic resonance spectroscopy, we investigate the effect of the conjugation pathway on radiative and nonradiative relaxation of the triplet state in phenazine-based compounds and demonstrate that the contribution of the phenazine nπ* excited state is crucial to enabling phosphorescence.
RESUMO
Site-directed spin labeling of RNA based on click chemistry is used in combination with pulsed electron-electron double resonance (PELDOR) to benchmark a nitroxide spin label, called here dU. We compare this approach with another established method that employs the rigid spin label Çm for RNA labeling. By using CD spectroscopy, thermal denaturation measurements, CW-EPR as well as PELDOR we analyzed and compared the influence of dU and Çm on a self-complementary RNA duplex. Our results demonstrate that the conformational diversity of dU is significantly reduced near the freezing temperature of a phosphate buffer, resulting in strongly orientation-selective PELDOR time traces of the dU-labeled RNA duplex.
Assuntos
Química Click/métodos , RNA , Marcadores de Spin/síntese química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , ElétronsRESUMO
Low-temperature generation of P-nitroxyl phosphane 2 (Ph2 POTEMP), which was obtained by the reaction of Ph2 PH (1) with two equivalents of TEMPO, is presented. Upon warming, phosphane 2 decomposed to give P-nitroxyl phosphane P-oxide 3 (Ph2 P(O)OTEMP) as one of the final products. This facile synthetic protocol also enabled access to P-sulfide and P-borane derivatives 7 and 13, respectively, by using Ph2 P(S)H (6) or Ph2 P(BH3 )H (11) and TEMPO. Phosphane sulfide 7 revealed a rearrangement to phosphane oxide 8 (Ph2 P(O)STEMP) in CDCl3 at ambient temperature, whereas in THF, thermal decomposition of sulfide 7 yielded salt 10 ([TEMP-H2 ][Ph2 P(S)O]). As well as EPR and detailed NMR kinetic studies, indepth theoretical studies provided an insight into the reaction pathways and spin-density distributions of the reactive intermediates.
RESUMO
The lowest excited triplet (T(1)) ππ* states of gallium (Ga) and various rhodium (Rh) 5,10,15-trispentafluorophenyl corroles (Cors) were studied in the liquid crystal (LC) E-7 and in rigid glasses by time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy. The triplet sublevel energies were experimentally determined by the alignment of the molecules in the LC and by magnetophotoselection in the glass. The sublevel scheme of GaCor was determined by calculating the zero field splitting (ZFS) parameters. Axial ligand effects and quantum chemical calculations were used for the sublevel assignment of RhCors. The anisotropic EPR parameters were used to determine the important higher excited states and the magnitudes of their spin-orbit coupling (SOC) contributions were evaluated. On the basis of these results and analyses, the EPR parameters and triplet lifetime were discussed for each RhCor complex.
RESUMO
Molecular magnets Cu(hfac)(2)L(R) represent a new type of photoswitchable materials based on exchange-coupled clusters of copper(II) with stable nitroxide radicals. It was found recently that the photoinduced spin state of these compounds is metastable on the time scale of hours at cryogenic temperatures, similar to the light-induced excited spin state trapping phenomenon well-known for many spin-crossover compounds. Our previous studies have shown that electron paramagnetic resonance (EPR) in continuous wave (CW) mode allows for studying the light-induced spin state conversion and relaxation in the Cu(hfac)(2)L(R) family. However, light-induced spin dynamics in these compounds has not been studied on the sub-second time scale so far. In this work we report the first time-resolved (TR) EPR study of light-induced spin state switching and relaxation in Cu(hfac)(2)L(R) with nanosecond temporal resolution. To enhance spectral resolution we used high-frequency TR EPR at W-band (94 GHz). We first discuss the peculiarities of applying TR EPR to the solid-phase compounds Cu(hfac)(2)L(R) at low (liquid helium) temperatures and approaches developed for photoswitching/relaxation studies. Then we analyze the kinetics of the excited spin state at T = 5-21 K. It has been found that the photoinduced spin state is formed at time delays shorter than 100 ns. It has also been found that the observed relaxation of the excited state is exponential on the nanosecond time scale, with the decay rate depending linearly on temperature. We propose and discuss possible mechanisms of these processes and correlate them with previously obtained CW EPR data.
RESUMO
The oxidation of a redox-active tyrosine residue Y(Z) in photosystem II (PSII) is coupled with proton transfer to a hydrogen-bonded D1-His190 residue. Because of the apparent proximity of Y(Z) to the water-oxidizing complex and its redox activity, it is believed that Y(Z) plays a significant role in water oxidation in PSII. We investigated the g-anisotropy of the tyrosine radical Y(Z)(â¢) to provide insight into the mechanism of Y(Z)(â¢) proton-coupled electron transfer in Mn-depleted PSII. The anisotropy was highly resolved by electron paramagnetic resonance spectroscopy at the W-band (94.9 GHz) using PSII single crystals. The g(X)-component along the phenolic C-O bond of Y(Z)(â¢) was calculated by density functional theory (DFT). It was concluded from the highly resolved g-anisotropy that Y(Z) loses a phenol proton to D1-His190 upon tyrosine oxidation, and D1-His190 redonates the same proton back to Y(Z)(â¢) upon reduction.
Assuntos
Complexo de Proteína do Fotossistema II/metabolismo , Prótons , Tirosina/análogos & derivados , Anisotropia , Transporte de Elétrons , Conformação Molecular , Oxirredução , Complexo de Proteína do Fotossistema II/química , Teoria Quântica , Tirosina/química , Tirosina/metabolismoRESUMO
Carbohydrate aqueous solutions of trehalose, glucose, and fructose were sprayed by using a pneumatic atomizer, and their infrared extinction spectra were recorded for the region from 700 to 5000 cm(-1). Analysis based on Mie scattering theory indicated that sprayed droplets transformed into nonvolatile amorphous nanoparticles by solvent evaporation. Average diameters of these particles were estimated to be about 100 nm, which was further confirmed by differential mobility analysis. The results demonstrate that nanoparticles can be created by spray drying of aqueous solutions, and that the sizes, phases, and structures of these particles can be well characterized by infrared extinction spectroscopy.
Assuntos
Carboidratos/química , Frutose/química , Glucose/química , Movimento (Física) , Nanopartículas/química , Tamanho da Partícula , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Trealose/química , Volatilização , Água/químicaRESUMO
The multiline signal from the S2-state manganese cluster in the oxygen evolving complex of photosystem II (PSII) was observed in single crystals of a thermophilic cyanobacterium Thermosynechococcus vulcanus for the first time by W-band (94 GHz) electron paramagnetic resonance (EPR). At W-band, spectra were characterized by the g-anisotropy, which enabled the precise determination of the tensor. Distinct hyperfine splittings (hfs's) as seen in frozen solutions of PSII at X-band (9.5 GHz) were detected in most of the crystal orientations relative to the magnetic field. In some orientations, however, the hfs's disappeared due to overlapping of a large number of EPR lines from eight crystallographic symmetry-related sites of the manganese cluster within the unit cell of the crystal. Analysis of the orientation-dependent spectral features yielded the following g-tensor components: g(x) = 1.988, g(y) = 1.981, g(z) = 1.965. The principal values suggested an approximate axial symmetry around the Mn(III) ion in the cluster.