Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 153(3): 868-873.e4, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38040043

RESUMO

BACKGROUND: The integumentary system of the skin serves as an exceptional protective barrier, with the stratum corneum situated at the forefront. This outermost layer is composed of keratinocytes that biosynthesize filaggrin (encoded by the gene Flg), a pivotal constituent in maintaining skin health. Nevertheless, the precise role of sensory nerves in restoration of the skin barrier after tape stripping-induced epidermal disruption, in contrast to the wound-healing process, remains a tantalizing enigma. OBJECTIVE: This study aimed to elucidate the cryptic role of sensory nerves in repair of the epidermal barrier following tape stripping-induced disruption. METHODS: Through the implementation of resiniferatoxin (RTX)-treated denervation mouse model, we investigated the kinetics of barrier repair after tape stripping and performed immunophenotyping and gene expression analysis in the skin or dorsal root ganglia (DRG) to identify potential neuropeptides. Furthermore, we assessed the functional impact of candidates on the recovery of murine keratinocytes and RTX-treated mice. RESULTS: Ablation of TRPV1-positive sensory nerve attenuated skin barrier recovery and sustained subcutaneous inflammation, coupled with elevated IL-6 level in ear homogenates after tape stripping. Expression of the keratinocyte differentiation marker Flg in the ear skin of RTX-treated mice was decreased compared with that in control mice. Through neuropeptide screening, we found that the downregulation of Flg by IL-6 was counteracted by somatostatin or octreotide (a chemically stable somatostatin analog). Furthermore, RTX-treated mice given octreotide exhibited a partial improvement in barrier recovery after tape stripping. CONCLUSION: Sensory neurons expressing TRPV1 play an indispensable role in restoring barrier function following epidermal injury. Our findings suggest the potential involvement of somatostatin in restoring epidermal repair after skin injury.


Assuntos
Interleucina-6 , Neuropeptídeos , Camundongos , Animais , Interleucina-6/metabolismo , Octreotida/metabolismo , Epiderme/metabolismo , Somatostatina/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
2.
Biol Pharm Bull ; 46(9): 1223-1230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37661402

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammation and the destruction of bone and cartilage in affected joints. One of the unmet medical needs in the treatment of RA is to effectively prevent the structural destruction of joints, especially bone, which progresses because of resistance to conventional drugs that mainly have anti-inflammatory effects, and directly leads to a decline in the QOL of patients. We previously developed a novel and orally available type II kinase inhibitor of colony-stimulating factor-1 receptor (CSF1R), JTE-952. CSF1R is specifically expressed by monocytic-lineage cells, including bone-resorbing osteoclasts, and is important for promoting the differentiation and proliferation of osteoclasts. In the present study, we investigated the therapeutic effect of JTE-952 on methotrexate (MTX)-refractory joint destruction in a clinically established adjuvant-induced arthritis rat model. JTE-952 did not suppress paw swelling under inflammatory conditions, but it inhibited the destruction of joint structural components including bone and cartilage in the inflamed joints. In addition, decreased range of joint motion and mechanical hyperalgesia after disease onset were suppressed by JTE-952. These results suggest that JTE-952 is expected to prevent the progression of the structural destruction of joints and its associated effects on joint motion and pain by inhibiting CSF1/CSF1R signaling in RA pathology, which is resistant to conventional disease-modifying anti-rheumatic drugs such as MTX.


Assuntos
Antineoplásicos , Artrite Reumatoide , Animais , Ratos , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Fator Estimulador de Colônias de Macrófagos , Qualidade de Vida , Artrite Reumatoide/tratamento farmacológico , Receptores Proteína Tirosina Quinases
3.
ACS Omega ; 8(26): 23925-23935, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426216

RESUMO

We have developed an innovative system, AI QM Docking Net (AQDnet), which utilizes the three-dimensional structure of protein-ligand complexes to predict binding affinity. This system is novel in two respects: first, it significantly expands the training dataset by generating thousands of diverse ligand configurations for each protein-ligand complex and subsequently determining the binding energy of each configuration through quantum computation. Second, we have devised a method that incorporates the atom-centered symmetry function (ACSF), highly effective in describing molecular energies, for the prediction of protein-ligand interactions. These advancements have enabled us to effectively train a neural network to learn the protein-ligand quantum energy landscape (P-L QEL). Consequently, we have achieved a 92.6% top 1 success rate in the CASF-2016 docking power, placing first among all models assessed in the CASF-2016, thus demonstrating the exceptional docking performance of our model.

4.
J Hum Genet ; 68(10): 699-704, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37308567

RESUMO

Although chronic kidney disease (CKD) is recognized as a major public health concern, effective treatment strategies have yet to be developed. Identification and validation of drug targets are key issues in the development of therapeutic agents for CKD. Uric acid (UA), a major risk factor for gout, has also been suggested to be a risk factor for CKD, but the efficacy of existing urate-lowering therapies for CKD is controversial. We focused on five uric acid transporters (ABCG2, SLC17A1, SLC22A11, SLC22A12, SLC2A9) as potential drug targets and evaluated the causal association between serum UA levels and estimated glomerular filtration rate (eGFR) using single-SNP Mendelian Randomization. The results showed a causal association between genetically predicted changes in serum UA levels and eGFR when genetic variants were selected from the SLC2A9 locus. Estimation based on a loss-of-function mutation (rs16890979) showed that the changes in eGFR per unit increase in serum UA level was -0.0082 ml/min/1.73 m2 (95% CI -0.014 to -0.0025, P = 0.0051). These results indicate that SLC2A9 may be a novel drug target for CKD that preserves renal function through its urate-lowering effect.


Assuntos
Gota , Transportadores de Ânions Orgânicos , Insuficiência Renal Crônica , Humanos , Ácido Úrico , Análise da Randomização Mendeliana , Gota/genética , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética , Fatores de Risco , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas Facilitadoras de Transporte de Glucose/genética
5.
Eur J Pharmacol ; 898: 173990, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33657422

RESUMO

Anemia with inflammation-induced defective iron utilization is a pathological condition observed in patients suffering from chronic kidney disease (CKD) or chronic inflammatory disease. There is no reasonable treatment for these conditions, because the effects of erythropoiesis stimulating agents (ESAs) or iron supplementation in the treatment of anemia are insufficient. JTZ-951 (enarodustat) has been characterized as a novel, orally bioavailable inhibitor of hypoxia-inducible factor prolyl hydroxylase (HIF-PH), and has been developed as a novel therapeutic agent for anemia with CKD. In this study, the effects of JTZ-951 on iron utilization during erythropoiesis and on anemia of inflammation were compared with those of recombinant human erythropoietin (rHuEPO) using normal rat and rat model of anemia of inflammation. In normal rats, under conditions in which JTZ-951 and rHuEPO showed similar erythropoietic effect, repeated doses of JTZ-951 induced erythropoiesis while retaining the hemoglobin content in red blood cells, while administration of rHuEPO resulted in decrease in some erythrocyte-related parameters. As for iron-related parameters during erythropoiesis, JTZ-951 exhibited more efficient iron utilization compared to rHuEPO. A single dose of JTZ-951 resulted in decrease in hepcidin expression observed within 24 h after administration, but a single dose of rHuEPO did not. In a rat model of anemia of inflammation (also known as a model with functional iron-deficiency), JTZ-951 showed erythropoietic effect, in contrast with rHuEPO. These results suggest that, unlike rHuEPO, JTZ-951 stimulates erythropoiesis by increasing iron utilization, and improves anemia of inflammation.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Eritrócitos/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Eritropoetina/farmacologia , Hematínicos/farmacologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Ferro/sangue , Glicinas N-Substituídas/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Anemia Ferropriva/sangue , Anemia Ferropriva/enzimologia , Anemia Ferropriva/etiologia , Animais , Artrite Experimental/complicações , Biomarcadores/sangue , Eritrócitos/enzimologia , Feminino , Hepcidinas/genética , Hepcidinas/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Ratos Endogâmicos Lew , Proteínas Recombinantes/farmacologia
6.
J Allergy Clin Immunol ; 148(3): 858-866, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33609627

RESUMO

BACKGROUND: Sensory nerves regulate cutaneous local inflammation indirectly through induction of pruritus and directly by acting on local immune cells. The underlying mechanisms for how sensory nerves influence cutaneous acquired immune responses remain to be clarified. OBJECTIVE: This study aimed to explore the effect of peripheral nerves on cutaneous immune cells in cutaneous acquired immune responses. METHODS: We analyzed contact hypersensitivity (CHS) responses as a murine model of delayed-type hypersensitivity in absence or presence of resiniferatoxin-induced sensory nerve denervation. We conducted ear thickness measurements, flow cytometric analyses, and mRNA expression analyses in CHS. RESULTS: CHS responses were attenuated in mice that were denervated during the sensitization phase of CHS. By screening neuropeptides, we found that pituitary adenylate cyclase-activating polypeptide (PACAP) mRNA expression was decreased in the dorsal root ganglia after denervation. Administration of PACAP restored attenuated CHS response in resiniferatoxin-treated mice, and pharmacological inhibition of PACAP suppressed CHS. Flow cytometric analysis of skin-draining lymph nodes showed that cutaneous dendritic cell migration and maturation were reduced in both denervated mice and PACAP antagonist-treated mice. The expression of chemokine receptors CCR7 and CXCR4 of dendritic cell s was enhanced by addition of PACAP in vitro. CONCLUSION: These findings indicate that a neuropeptide PACAP promotes the development of CHS responses by inducing cutaneous dendritic cell functions during the sensitization phase.


Assuntos
Dermatite de Contato/imunologia , Células de Langerhans/imunologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/imunologia , Animais , Denervação , Dermatite de Contato/genética , Diterpenos/administração & dosagem , Feminino , Gânglios Espinais/fisiologia , Haptenos/administração & dosagem , Linfonodos/imunologia , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neurotoxinas/administração & dosagem , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores CCR7/imunologia , Receptores CXCR4/imunologia , Canais de Cátion TRPV
7.
Eur J Pharmacol ; 895: 173880, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33476654

RESUMO

Classic glucocorticoids have been prescribed for various inflammatory diseases, such as rheumatoid arthritis, due to their outstanding anti-inflammatory effects. However, glucocorticoids cause numerous unwanted side effects, including osteoporosis and diabetes. Hence, selective glucocorticoid receptor modulators (SGRMs), which retain anti-inflammatory effects with minimized side effects, are among the most anticipated drugs in the clinical field. The assumption is that there are two major mechanisms of action via glucocorticoid receptors, transrepression (TR) and transactivation (TA). In general, anti-inflammatory effects of glucocorticoids are largely due to TR, while the side effects associated with glucocorticoids are mostly mediated through TA. We previously reported that JTP-117968, a novel SGRM, maintained partial TR activity while remarkably reducing the TA activity. In this study, we investigated the anti-inflammatory effect of JTP-117968 on a lipopolysaccharide (LPS) challenge model and collagen-induced arthritis (CIA) model in mice. Meanwhile, we tested the effect of JTP-117968 on the bone mineral density (BMD) in mouse femur to evaluate the side effect. Based on the evaluation, JTP-117968 reduced the plasma levels of tumor necrosis factor α induced by LPS challenge in mice significantly. Remarkably, CIA development was suppressed by JTP-117968 comparably with prednisolone and PF-802, an active form of fosdagrocorat that has been developed clinically as an orally available SGRM. Strikingly, the side effect of JTP-117968 on mouse femoral BMD was much lower than those of PF-802 and prednisolone. Therefore, JTP-117968 has attractive potential as a new therapeutic option against inflammatory diseases with minimized side effects compared to classic glucocorticoids.


Assuntos
Aminopiridinas/farmacologia , Anti-Inflamatórios/farmacologia , Artrite Experimental/prevenção & controle , Densidade Óssea/efeitos dos fármacos , Glucocorticoides/farmacologia , Articulações/efeitos dos fármacos , Fenantrolinas/farmacologia , Receptores de Glucocorticoides/agonistas , Aminopiridinas/toxicidade , Animais , Anti-Inflamatórios/toxicidade , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Feminino , Glucocorticoides/toxicidade , Humanos , Mediadores da Inflamação/sangue , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Articulações/metabolismo , Articulações/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Fenantrolinas/toxicidade , Receptores de Glucocorticoides/metabolismo , Fator de Necrose Tumoral alfa/sangue
8.
Biol Pharm Bull ; 43(12): 1884-1892, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33268706

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and structural destruction of the joints. Bone damage occurs in an early stage after onset and osteoclast activation plays a substantial role in its progression. Colony stimulating factor 1 receptor (CSF1R) is a receptor protein tyrosine kinase specifically expressed in monocytic-lineage cells such as macrophages and osteoclasts. Here, we investigated the effect of JTE-952, a novel CSF1R tyrosine kinase inhibitor, on osteoclast formation in vitro and on bone destruction in a mouse model of collagen-induced arthritis. JTE-952 completely inhibited osteoclast differentiation from human monocytes, with an IC50 of 2.8 nmol/L, and reduced osteoclast formation from the synovial cells of RA patients. Detectable levels of colony stimulating factor 1 (CSF1), a ligand of CSF1R, were observed in the synovial tissues of the arthritis model, similar to those observed in the pathology of human RA. JTE-952 significantly suppressed increases in the bone destruction score, the number of tartrate-resistant-acid-phosphatase-positive cells, and the severity of arthritis in the model mice. We also examined the efficacy of JTE-952 combined with methotrexate. This combination therapy more effectively reduced the severity of bone destruction and arthritis than monotherapy with either agent alone. In summary, JTE-952 potently inhibited human osteoclast formation in vitro and suppressed bone destruction in an experimental arthritis model, especially when combined with methotrexate. These results indicate that JTE-952 should strongly inhibit bone destruction and joint inflammation in RA patients and effectively prevent the progression of the structural destruction of joints.


Assuntos
Artrite Experimental/tratamento farmacológico , Azetidinas/uso terapêutico , Densidade Óssea/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Azetidinas/farmacologia , Densidade Óssea/fisiologia , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Osteoclastos/metabolismo , Osteoclastos/patologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
9.
Biol Pharm Bull ; 43(2): 325-333, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32009119

RESUMO

Colony stimulating factor 1 (CSF1) receptor (CSF1R) is a receptor protein-tyrosine kinase specifically expressed in monocyte-lineage cells, such as monocytes and macrophages. In this study, we characterized the pharmacological properties of an azetidine compound, JTE-952 ((2S)-3-{[2-({3-[4-(4-cyclopropylbenzyloxy)-3-methoxyphenyl]azetidine-1-yl}carbonyl)pyridin-4-yl]methoxy}propane-1,2-diol), which is a novel CSF1R tyrosine kinase inhibitor. JTE-952 potently inhibited human CSF1R kinase activity, with a half maximal inhibitory concentration of 11.1 nmol/L, and inhibited the phosphorylation of CSF1R in human macrophages and the CSF1-induced proliferation of human macrophages. It also inhibited human tropomyosin-related kinase A activity, but only at concentrations 200-fold higher than that required to inhibit the activity of CSF1R in inducing the proliferation of human macrophages. JTE-952 displayed no marked inhibitory activity against other kinases. JTE-952 potently inhibited lipopolysaccharide-induced proinflammatory cytokine production by human macrophages and in whole blood. JTE-952 (≥3 mg/kg given orally) also significantly attenuated the CSF1-induced priming of lipopolysaccharide-induced tumor necrosis factor-alpha production in mice and arthritis severity in a mouse model of collagen-induced arthritis. Taken together, these results indicate that JTE-952 is an orally available compound with potent and specific inhibitory activity against CSF1R, both in vitro and in vivo. JTE-952 is a potentially clinically useful agent for various human inflammatory diseases, including rheumatoid arthritis.


Assuntos
Azetidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Animais , Artrite Experimental/tratamento farmacológico , Azetidinas/farmacocinética , Células Cultivadas , Citocinas/sangue , Citocinas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Ratos Endogâmicos Lew , Receptor trkA/metabolismo
11.
J Vet Med Sci ; 82(3): 379-386, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-31996496

RESUMO

Ferric citrate is an oral iron-based phosphate binder, being known to affect iron status and improve iron deficiency anemia (IDA) in chronic kidney disease (CKD) patients. We examined whether oral administration of ferric citrate could change iron status and improve anemia without affecting phosphorus metabolism in iron deficiency anemia rats. In Normal rat study, normal rats were fed a diet containing 0.3 or 3% ferric citrate for 11 days for setting the dose and administration period of ferric citrate. The effects of ferric citrate on iron status- and phosphorus metabolism-related parameters were evaluated using blood and urine samples. Next, an iron deficiency anemia was induced by feeding iron-depleted diet in rats. After 7 days of starting the iron-depleted diet, 0.3% ferric citrate was administered for 7 days by dietary admixture. Iron status- and phosphorus metabolism-related parameters were evaluated with blood and urine samples. In Normal rat study, 3% ferric citrate treatment increased serum iron level and transferrin saturation (TSAT), and decreased serum phosphorus level, intact fibroblast growth factor 23 (iFGF23) level, and urinary phosphorus excretion, but 0.3% ferric citrate treatment showed no effects. On the other hand, in Iron deficiency anemia rat study, 0.3% ferric citrate treatment increased iron status-related parameters and improved anemia, but did not show any apparent changes in phosphorus metabolism-related parameters. In conclusion, ferric citrate could have hematopoietic effects without affecting phosphorus metabolism, and could be a potential option for the treatment of IDA in patients without CKD.


Assuntos
Anemia Ferropriva/dietoterapia , Compostos Férricos/farmacologia , Fósforo/metabolismo , Administração Oral , Animais , Compostos Férricos/administração & dosagem , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Deficiências de Ferro , Masculino , Fósforo/sangue , Fósforo/urina , Ratos Sprague-Dawley
12.
Eur J Pharmacol ; 859: 172532, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31301309

RESUMO

JTZ-951 (enarodustat) is an oral hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitor. JTZ-951 has inhibitory activities on human HIF-prolyl hydroxylase 1-3, but not on various receptors or enzymes. In Hep3B cells, JTZ-951 increased HIF-1α and HIF-2α protein levels, erythropoietin (EPO) mRNA levels, and EPO production. In normal rats, after a single oral dose of JTZ-951, the hepatic and renal EPO mRNA levels and plasma EPO concentrations were also increased. In 5/6-nephrectomized rats, repeated oral doses of JTZ-951 once daily or intermittent dosing showed the erythropoiesis stimulating effect. The administration of JTZ-951 at a high dose increased plasma vascular endothelial growth factor (VEGF) levels; however, retinal VEGF mRNA levels and the retinal vascular permeability were not changed. Finally, we evaluated the effect of JTZ-951 in a colorectal cancer cell-inoculated mouse model. Although JTZ-951 at a high dose increased the plasma VEGF, it had no effect on tumor growth. In summary, JTZ-951 induces erythropoiesis without affecting VEGF function. Therefore, it is expected that JTZ-951 will be a new oral candidate that increases and maintains hemoglobin concentrations in renal anemia patients.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Eritropoese/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Glicinas N-Substituídas/farmacologia , Inibidores de Prolil-Hidrolase/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Eritropoetina/genética , Humanos , Estabilidade Proteica/efeitos dos fármacos , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética
13.
J Vet Med Sci ; 80(3): 465-472, 2018 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-29375080

RESUMO

Conventional clinical treatments for allergy management remain suboptimal; new, orally available medications that improve a wide range of allergic signs have been desired. We previously demonstrated that JTE-852, a novel spleen tyrosine kinase inhibitor, potently and simultaneously suppresses secretion of granule contents, arachidonate metabolites, and cytokines from mast cells stimulated by immunoglobulin E-crosslinking. In the present study, we investigated the effects of JTE-852 in four rat models (sneezing, rhinorrhea, airway constriction, and airway inflammation) as representatives of allergy models. Rats were sensitized and challenged with antigen. Allergic reactions developed after challenge were detected. JTE-852 and current anti-allergic drugs (ketotifen, pranlukast, and prednisolone) were administered orally before challenge. JTE-852 showed significant blocking effects on antigen-induced allergic reactions in all models, indicating that JTE-852 in oral dosage form would improve a wide range of allergic signs. The current anti-allergic drugs, on the other hand, failed to display significant suppression in several models. Because JTE-852 suppresses the secretion of all three groups of allergic mediators from mast cells, it would be capable of targeting signs that current drugs cannot sufficiently relieve. We anticipate JTE-852 to be a promising new anti-allergic drug that is potentially more effective than conventional drugs.


Assuntos
Aminopiridinas/farmacologia , Hipersensibilidade/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Baço/enzimologia , Tiazóis/farmacologia , Obstrução das Vias Respiratórias/tratamento farmacológico , Animais , Antígenos/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Hipersensibilidade/imunologia , Masculino , Mastócitos/metabolismo , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Ratos , Ratos Endogâmicos BN , Hipersensibilidade Respiratória/tratamento farmacológico , Espirro/efeitos dos fármacos
14.
Life Sci ; 191: 166-174, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29056373

RESUMO

AIMS: Immune and inflammatory responses mediated by immunoglobulin (Ig) G are largely responsible for the pathogenesis of autoimmune diseases. Spleen tyrosine kinase (Syk) plays a pivotal role in the IgG-mediated responses; therefore, Syk has emerged as a new therapeutic target for the treatment of autoimmune diseases. In this study, we investigated the inhibitory actions of JTE-852, a novel Syk inhibitor, on IgG-mediated cellular responses and autoimmune reactions in vivo. MAIN METHODS: We examined mediator secretion from human monocytes. We also conducted rat models of reversed cutaneous anaphylaxis (RCA) and reversed passive Arthus (RPA), which are classified as type II and type III hypersensitivities, respectively. In a rat collagen-induced arthritis (CIA) model, JTE-852 or methotrexate was administered preventively (before the onset of arthritis) or therapeutically (after the onset of arthritis). KEY FINDINGS: JTE-852 blocked secretion of reactive oxygen species and tumor necrosis factor-α from monocytes stimulated by IgG crosslinking. In the RCA and RPA models, JTE-852 also suppressed edema and dye leakage, respectively. In the CIA model, JTE-852 showed both preventive and therapeutic effects against joint swelling and bone erosion; on the other hand, methotrexate did not show the therapeutic effect. SIGNIFICANCE: JTE-852 attenuates IgG-mediated responses and signs in animal model of autoimmune diseases. JTE-852 is thus a promising candidate for a novel, orally available drug for the treatment of autoimmune diseases.


Assuntos
Aminopiridinas/uso terapêutico , Artrite Experimental/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Imunoglobulina G/imunologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinase Syk/antagonistas & inibidores , Tiazóis/uso terapêutico , Aminopiridinas/farmacologia , Animais , Artrite Experimental/imunologia , Doenças Autoimunes/imunologia , Autoimunidade/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Anafilaxia Cutânea Passiva/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Ratos Wistar , Quinase Syk/imunologia , Tiazóis/farmacologia
15.
Eur J Pharmacol ; 803: 179-186, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28366807

RESUMO

Classic glucocorticoids that have outstanding anti-inflammatory effects are still widely prescribed for the treatment of various inflammatory and autoimmune diseases. Conversely, glucocorticoids cause numerous unwanted side effects, particularly systemically dosed glucocorticoids. Therefore, selective glucocorticoid receptor modulator (SGRM), which maintains beneficial anti-inflammatory effects while reducing the occurrence of side effects, is one of the most anticipated drugs. However, there have been no SGRMs marketed to date. The assumption is that there are two major mechanisms of action of glucocorticoids via glucocorticoid receptors, transrepression (TR) and transactivation (TA). In general, the anti-inflammatory effects of glucocorticoids are mostly mediated through TR, while the side effects associated with glucocorticoids are largely caused by TA. We started to evaluate novel orally available SGRMs that maintain anti-inflammatory effects while minimizing adverse effects by favoring TR over TA. Based on this evaluation, we discovered JTP-117968, (4b'S,7'R,8a'S)-4b'-benzyl-7'-hydroxy-N-(2-methylpyridin-3-yl)-7'-(trifluoromethyl)-4b',6',7',8',8a',10'-hexahydro-5'H-spiro[cyclopropane-1,9'-phenanthrene]-2'-carboxamide, a non-steroidal SGRM. JTP-117968 has partial TR activity, but exhibits extremely low TA activity. The maximum TR efficacy of JTP-117968 was comparable to its structural analogue, PF-802, (4bS,7R,8aR)-4b-Benzyl-7-hydroxy-N-(2-methylpyridin-3-yl)-7-(trifluoromethyl)-4b,5,6,7,8,8a,9,10-octahydrophenanthrene-2-carboxamide, which is the active form of Fosdagrocorat that has been developed clinically as a first-in-class orally available SGRM. Remarkably, the TA activity of JTP-117968 was much weaker than PF-802 not only in in vitro assays, but also in in vivo mice experiments. These findings indicate that JTP-117968 exhibits improved TR/TA dissociation because the compound has significantly lower TA activity compared with an already reported SGRM. Therefore, JTP-117968 is expected to be a useful compound for evaluating ideal SGRMs in the future.


Assuntos
Aminopiridinas/farmacologia , Fenantrenos/farmacologia , Fenantrolinas/farmacologia , Receptores de Glucocorticoides/metabolismo , Ativação Transcricional/efeitos dos fármacos , Aminopiridinas/farmacocinética , Animais , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fenantrenos/farmacocinética , Fenantrolinas/farmacocinética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tirosina Transaminase/genética
16.
Eur J Pharmacol ; 801: 1-8, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28259713

RESUMO

Mast cells stimulated by immunoglobulin E (IgE)-crosslinking secrete mediators, which are mainly categorized into three groups: granule contents, arachidonate metabolites, and cytokines. These mediators play important roles in pathogenesis of allergic diseases; indeed, some conventional drugs which target the mediators are used in clinical practices. However, these drugs are not yet sufficient enough in their efficacy. That is because most of them are blockers of single mediators and are unable to prevent simultaneously various reactions caused by the three group mediators. Spleen tyrosine kinase (Syk) is a non-receptor protein tyrosine kinase. In mast cells, Syk locates at almost top of the signal cascades induced by IgE-crosslinking and plays pivotal roles in secretion of the three groups of mediators. Therefore, inhibition of Syk would suppress the secretion of all the mediators from mast cells and be a promising-treatment strategy for allergic diseases. In the present study, we characterized pharmacological profiles of JTE-852, which was identified as a novel Syk inhibitor. JTE-852 inhibited kinase activity of Syk in an adenosine 5'-triphosphate (ATP)-competitive fashion. JTE-852 also blocked the secretion of granule contents, arachidonate metabolites, and cytokines from mast cells stimulated by IgE-crosslinking, with similar potencies. The results suggest that JTE-852 is supposed to prevent various allergic reactions caused by the three group mediators in vivo. In fact, oral gavage of JTE-852 attenuated an allergic reaction mediated by histamine, which is a representative of the three groups of mediators. JTE-852 is expected to be a novel, highly-efficacious, and orally available anti-allergic drug.


Assuntos
Aminopiridinas/farmacologia , Imunoglobulina E/imunologia , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Inibidores de Proteínas Quinases/farmacologia , Quinase Syk/antagonistas & inibidores , Tiazóis/farmacologia , Animais , Linhagem Celular Tumoral , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Mastócitos/citologia , Mastócitos/metabolismo , Anafilaxia Cutânea Passiva/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Quinase Syk/metabolismo
17.
J Dermatol Sci ; 84(3): 258-265, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27665390

RESUMO

BACKGROUND: Using JAK inhibitors to inhibit cytokine signaling is presumed to be a possible means of treating skin inflammatory disorders such as contact dermatitis. OBJECTIVE: To clarify the action site of JAK inhibitors in skin inflammatory disorders. METHODS: We analyzed the mechanism of action of the JAK inhibitor JTE-052 using murine skin inflammation models, including contact hypersensitivity (CHS) and irritant contact dermatitis. Cells isolated from ear tissue or lymph node (LN) were analyzed by flow cytometry. The amounts of cytokines in the culture medium were measured by ELISA or bead array system. Proliferation of LN cells was evaluated by measurement of tritiated thymidine incorporation. RESULTS: Oral administration of JTE-052 during both sensitization and elicitation phase attenuated CHS, but did not affect croton oil-induced irritant contact dermatitis. JTE-052 potently inhibited T cell proliferation and activation by antigen presentation in vitro, and attenuated skin inflammation in a sensitized-lymphocyte transfer model without suppressing T cell migration. JTE-052 did not affect hapten-induced cutaneous dendritic cell migration into draining lymph nodes or their costimulatory molecule expressions. CONCLUSION: The JAK inhibitor JTE-052 exerts an inhibitory effect on antigen-specific T cell activation and subsequent inflammation in acquired skin immunity, such as CHS.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Dermatite Alérgica de Contato/tratamento farmacológico , Ativação Linfocitária , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Linfócitos T/citologia , Administração Oral , Animais , Apresentação de Antígeno , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Óleo de Cróton , Células Dendríticas/citologia , Dermatite Alérgica de Contato/imunologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Haptenos/imunologia , Inflamação , Interferon gama/metabolismo , Interleucina-13/metabolismo , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pele/imunologia , Pele/patologia
18.
BMC Musculoskelet Disord ; 16: 339, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26546348

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to joint destruction, disability, and decreased quality of life (QOL). Inhibition of Janus kinase (JAK) signaling ameliorates articular inflammation and joint destruction in animal models of RA, but its effects on behaviors indicating well-being are poorly understood. In this study, we evaluated the effect of JAK inhibition on spontaneous locomotor activity in rats with adjuvant-induced arthritis, a rodent model of RA. METHODS: Arthritis was induced in male Lewis rats by a single subcutaneous injection of Freund's complete adjuvant. The novel JAK inhibitor JTE-052 was orally administered for 7 days after the onset of arthritis. RESULTS: Induction of arthritis suppressed the spontaneous locomotor activity of the rats. Administration of JTE-052 completely improved the spontaneous locomotor activity, with partial reductions in articular inflammation and joint destruction. Hyperalgesia and motor functions were also improved, but the efficacy was not complete. However, serum interleukin (IL)-6 levels were completely decreased at 4 h after administration of the first dose of JTE-052. CONCLUSIONS: This study demonstrated that JAK inhibition improved the spontaneous locomotor activity of rats with adjuvant-induced arthritis, in association with amelioration of pain and physical dysfunction as a consequence of suppression of joint inflammation. Moreover, although further studies are needed, there was possible participation of IL-6 downregulation in the improvement of locomotor activity by JAK inhibition.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Adjuvante de Freund , Janus Quinases/antagonistas & inibidores , Atividade Motora/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Artrite Experimental/induzido quimicamente , Artrite Experimental/enzimologia , Artrite Experimental/fisiopatologia , Artrite Experimental/psicologia , Biomarcadores/sangue , Relação Dose-Resposta a Droga , Esquema de Medicação , Hiperalgesia/enzimologia , Hiperalgesia/fisiopatologia , Hiperalgesia/prevenção & controle , Mediadores da Inflamação/sangue , Interleucina-6/sangue , Janus Quinases/metabolismo , Articulações/efeitos dos fármacos , Articulações/enzimologia , Articulações/fisiopatologia , Masculino , Inibidores de Proteínas Quinases/administração & dosagem , Ratos Endogâmicos Lew , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
19.
J Allergy Clin Immunol ; 136(3): 667-677.e7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26115905

RESUMO

BACKGROUND: Barrier disruption and the resulting continuous exposure to allergens are presumed to be responsible for the development of atopic dermatitis (AD). However, the mechanism through which skin barrier function is disrupted in patients with AD remains unclear. OBJECTIVES: Taking into account the fact that the TH2 milieu impairs keratinocyte terminal differentiation, we sought to clarify our hypothesis that the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway plays a critical role in skin barrier function and can be a therapeutic target for AD. METHODS: We analyzed the mechanism of keratinocyte differentiation using a microarray and small interfering RNA targeting STATs. We studied the effect of the JAK inhibitor JTE-052 on keratinocyte differentiation using the human skin equivalent model and normal human epidermal keratinocytes. We applied topical JAK inhibitor onto NC/Nga mice, dry skin model mice, and human skin grafted to immunocompromised mice. RESULTS: IL-4 and IL-13 downregulated genes involved in keratinocyte differentiation. STAT3 and STAT6 are involved in keratinocyte differentiation and chemokine production by keratinocytes, respectively. Topical application of the JAK inhibitor suppressed STAT3 activation and improved skin barrier function, permitting increases in levels of terminal differentiation proteins, such as filaggrin, and natural moisturizing factors in models of AD and dry skin and in human skin. CONCLUSION: STAT3 signaling is a key element that regulates keratinocyte differentiation. The JAK inhibitor can be a new therapeutic tool for the treatment of disrupted barrier function in patients with AD.


Assuntos
Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Hospedeiro Imunocomprometido , Queratinócitos/efeitos dos fármacos , Fator de Transcrição STAT3/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Dermatite Atópica/genética , Dermatite Atópica/patologia , Modelos Animais de Doenças , Proteínas Filagrinas , Regulação da Expressão Gênica , Humanos , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/imunologia , Queratinócitos/imunologia , Queratinócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT6/antagonistas & inibidores , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/imunologia , Transdução de Sinais , Transplante de Pele , Pele Artificial , Transplante Heterólogo
20.
Inflamm Res ; 64(1): 41-51, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25387665

RESUMO

OBJECTIVE: To evaluate the pharmacological properties of JTE-052, a novel Janus kinase (JAK) inhibitor. METHODS: The JAK inhibitory activity of JTE-052 was evaluated using recombinant human enzymes. The inhibitory effects on cytokine signaling pathways were evaluated using primary human inflammatory cells. The in vivo efficacy and potency of JTE-052 were examined in a mouse interleukin (IL)-2-induced interferon (IFN)-γ production model and a rat collagen-induced arthritis model. RESULTS: JTE-052 inhibited the JAK1, JAK2, JAK3, and tyrosine kinase (Tyk)2 enzymes in an adenosine triphosphate (ATP)-competitive manner and inhibited cytokine signaling evoked by IL-2, IL-6, IL-23, granulocyte/macrophage colony-stimulating factor, and IFN-α. JTE-052 inhibited the activation of inflammatory cells, such as T cells, B cells, monocytes, and mast cells, in vitro. Oral dosing of JTE-052 resulted in potent suppression of the IL-2-induced IFN-γ production in mice with an ED50 value of 0.24 mg/kg, which was more potent than that of tofacitinib (ED50 = 1.1 mg/kg). In the collagen-induced arthritis model, JTE-052 ameliorated articular inflammation and joint destruction even in therapeutic treatments where methotrexate was ineffective. CONCLUSIONS: The present results indicate that JTE-052 is a highly potent JAK inhibitor, and represents a candidate anti-inflammatory agent for suppressing various types of inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/prevenção & controle , Inflamação/prevenção & controle , Janus Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Antirreumáticos/uso terapêutico , Artrite Experimental/induzido quimicamente , Artrite Experimental/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Células Cultivadas , Colágeno/efeitos adversos , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Técnicas In Vitro , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interferon gama/metabolismo , Interleucina-2/efeitos adversos , Mastócitos/efeitos dos fármacos , Mastócitos/patologia , Metotrexato/uso terapêutico , Camundongos , Camundongos Endogâmicos DBA , Ratos , Ratos Endogâmicos Lew , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA