Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39464024

RESUMO

Motility is a hallmark of life's dynamic processes, enabling cells to actively chase prey, repair wounds, and shape organs. Recreating these intricate behaviors using well-defined molecules remains a major challenge at the intersection of biology, physics, and molecular engineering. Although the polymerization force of the actin cytoskeleton is characterized as a primary driver of cell motility, recapitulating this process in protocellular systems has proven elusive. The difficulty lies in the daunting task of distilling key components from motile cells and integrating them into model membranes in a physiologically relevant manner. To address this, we developed a method to optically control actin polymerization with high spatiotemporal precision within cell-mimetic lipid vesicles known as giant unilamellar vesicles (GUVs). Within these active protocells, the reorganization of actin networks triggered outward membrane extensions as well as the unidirectional movement of GUVs at speeds of up to 0.43 µm/min, comparable to typical adherent mammalian cells. Notably, our findings reveal a synergistic interplay between branched and linear actin forms in promoting membrane protrusions, highlighting the cooperative nature of these cytoskeletal elements. This approach offers a powerful platform for unraveling the intricacies of cell migration, designing synthetic cells with active morphodynamics, and advancing bioengineering applications, such as self-propelled delivery systems and autonomous tissue-like materials.

2.
Biomater Sci ; 12(13): 3423-3430, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38809312

RESUMO

Micro-nanomaterials that can adopt different structures are powerful tools in the fields of biological and medical sciences. We previously developed a lipid membrane that can convert between 2D nanosheet and 3D vesicle forms using cationic copolymer polyallylamine-graft-polyethylene glycol and the anionic peptide E5. The properties of the membrane during conversion have been characterized only by confocal laser scan microscopy. Furthermore, due to the 2D symmetry of the lipid nanosheet, the random folding of the lipid bilayer into either the original or the reverse orientation occurs during sheet-to-vesicle conversion, compromising the structural consistency of the membrane. In this study, flow cytometry was applied to track the conversion of more than 5000 lipid membranes from 3D vesicles to 2D nanosheets and back to 3D vesicles, difficult with microscopies. The lipid nanosheets exhibited more side scattering intensity than 3D vesicles, presumably due to free fluctuation and spin of the sheets in the suspension. Furthermore, by immobilizing bovine serum albumin as one of the representative proteins on the outer leaflet of giant unilamellar vesicles at a relatively low coverage, complete restoration of lipid membranes to the original 3D orientation was obtained after sheet-to-vesicle conversion. This convertible membrane system should be applicable in a wide range of fields. Our findings also provide experimental evidence for future theoretical studies on membrane behavior.


Assuntos
Soroalbumina Bovina , Soroalbumina Bovina/química , Polietilenoglicóis/química , Animais , Bicamadas Lipídicas/química , Poliaminas/química , Bovinos , Nanoestruturas/química , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Peptídeos/química
3.
Chem Commun (Camb) ; 60(46): 5972-5975, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38767578

RESUMO

Here we report two novel synthetic riboswitches that respond to ASP2905 and theophylline and function in reconstituted cell-free protein synthesis (CFPS) system. We encapsulated the CFPS system as well as DNA-templated encoding reporter genes regulated by these orthogonal riboswitches inside liposomes, and achieved switchable and orthogonal control over gene expression by external stimulation with the cognate ligands.


Assuntos
Células Artificiais , Riboswitch , Teofilina , Teofilina/química , Células Artificiais/química , Células Artificiais/metabolismo , Lipossomos/química , Regulação da Expressão Gênica , Biossíntese de Proteínas , Sistema Livre de Células , Genes Reporter , Ligantes
4.
Lab Chip ; 24(5): 996-1029, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38239102

RESUMO

A molecular robot, which is a system comprised of one or more molecular machines and computers, can execute sophisticated tasks in many fields that span from nanomedicine to green nanotechnology. The core parts of molecular robots are fairly consistent from system to system and always include (i) a body to encapsulate molecular machines, (ii) sensors to capture signals, (iii) computers to make decisions, and (iv) actuators to perform tasks. This review aims to provide an overview of approaches and considerations to develop molecular robots. We first introduce the basic technologies required for constructing the core parts of molecular robots, describe the recent progress towards achieving higher functionality, and subsequently discuss the current challenges and outlook. We also highlight the applications of molecular robots in sensing biomarkers, signal communications with living cells, and conversion of energy. Although molecular robots are still in their infancy, they will unquestionably initiate massive change in biomedical and environmental technology in the not too distant future.


Assuntos
Robótica , Nanotecnologia , Tecnologia , Lipídeos
5.
ACS Synth Biol ; 13(1): 68-76, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38032418

RESUMO

To expand the range of practical applications of artificial cells, it is important to standardize the production process of giant (cell-sized) vesicles that encapsulate reconstituted biochemical reaction systems. For this purpose, a rapidly developing microfluidics-based giant vesicle generation system is a promising approach, similar to the droplet assay systems that are already widespread in the market. In this study, we examined the composition of the solutions used to generate vesicles encapsulating the in vitro transcription-translation (IVTT) system. We show that tuning of the lipid composition and adding poly(vinyl alcohol) to the outer solution improved the stability of the transition process into the lipid membrane so that protein synthesis proceeded in vesicles. The direct integration of α-hemolysin nanopores synthesized in situ was also demonstrated. These protein-synthesizing monodisperse giant vesicles can be prepared by using a simple microfluidic fabrication/operation with a commercial IVTT system.


Assuntos
Células Artificiais , Microfluídica , Células Artificiais/química , Proteínas , Lipídeos
6.
ACS Synth Biol ; 12(5): 1437-1446, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37155350

RESUMO

Artificial cells are membrane vesicles mimicking cellular functions. To date, giant unilamellar vesicles made from a single lipid membrane with a diameter of 10 µm or more have been used to create artificial cells. However, the creation of artificial cells that mimic the membrane structure and size of bacteria has been limited due to technical restrictions of conventional liposome preparation methods. Here, we created bacteria-sized large unilamellar vesicles (LUVs) with proteins localized asymmetrically to the lipid bilayer. Liposomes containing benzylguanine-modified phospholipids were prepared by combining the conventional water-in-oil emulsion method and the extruder method, and green fluorescent protein fused with SNAP-tag was localized to the inner leaflet of the lipid bilayer. Biotinylated lipid molecules were then inserted externally, and the outer leaflet was modified with streptavidin. The resulting liposomes had a size distribution in the range of 500-2000 nm with a peak at 841 nm (the coefficient of variation was 10.3%), which was similar to that of spherical bacterial cells. Fluorescence microscopy, quantitative evaluation using flow cytometry, and western blotting proved the intended localization of different proteins on the lipid membrane. Cryogenic electron microscopy and quantitative evaluation by α-hemolysin insertion revealed that most of the created liposomes were unilamellar. Our simple method for the preparation of bacteria-sized LUVs with asymmetrically localized proteins will contribute to the creation of artificial bacterial cells for investigating functions and the significance of their surface structure and size.


Assuntos
Lipossomos , Lipossomas Unilamelares , Lipossomos/química , Lipossomas Unilamelares/química , Bicamadas Lipídicas/química , Fosfolipídeos , Microscopia de Fluorescência , Bactérias
7.
Adv Biol (Weinh) ; 7(3): e2200177, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574482

RESUMO

A protein synthesis system is one of the most important and complex biological networks, which translates DNA-encoded information into specific functions. Here, ePURE_JSBML, a tool for constructing biologically relevant large-scale and detailed computational models based on a reconstituted cell-free protein synthesis system, is presented; the user can specify the mRNA sequence, initial component concentration, and decoding rule. Model construction is based on Systems Biology Markup Language (SBML) using JSBML, a pure Java programming library. The tool generates simulation files, executable with Matlab, that enable a variety of simulation experiments including the synthesis of proteins of a few hundred residues.


Assuntos
Proteínas de Escherichia coli , Ácidos Nucleicos , Software , Linguagens de Programação , Escherichia coli/genética , Modelos Biológicos , Proteínas de Escherichia coli/genética
9.
Anal Chem ; 94(9): 3831-3839, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35188389

RESUMO

Engineering G-protein-coupled receptors (GPCRs) for improved stability or altered function is of great interest, as GPCRs consist of the largest protein family, are involved in many important signaling pathways, and thus, are one of the major drug targets. Here, we report the development of a high-throughput screening method for GPCRs using a reconstituted in vitro transcription-translation (IVTT) system. Human endothelin receptor type-B (ETBR), a class A GPCR that binds endothelin-1 (ET-1), a 21-residue peptide hormone, was synthesized in the presence of nanodisc (ND) composed of a phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG). The ET-1 binding of ETBR was significantly reduced or was undetectable when other phospholipids were used for ND preparation. However, when functional ETBR purified from Sf9 cells was reconstituted into NDs, ET-1 binding was observed with two different phospholipids tested, including POPG. These results suggest that POPG likely supports the folding of ETBR into its functional form in the IVTT system. Using the same conditions as ETBR, whose three-dimensional structure has been solved, human endothelin receptor type-A (ETAR), whose three-dimensional structure remains unsolved, was also synthesized in its functional form. By adding POPG-ND to the IVTT system, both ETAR and ETBR were successfully subjected to ribosome display, a method of in vitro directed evolution that facilitates the screening of up to 1012 mutants. Finally, using a mock library, we showed that ribosome display can be applied for gene screening of ETBR, suggesting that high-throughput screening and directed evolution of GPCRs is possible in vitro.


Assuntos
Sistema Livre de Células , Endotelina-1 , Engenharia de Proteínas , Receptor de Endotelina A , Humanos , Fosfolipídeos , Engenharia de Proteínas/métodos , Receptor de Endotelina A/biossíntese , Ribossomos
10.
FEBS J ; 289(12): 3505-3520, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35030303

RESUMO

Staphylococcus aureus expresses several hemolytic pore-forming toxins (PFTs), which are all commonly composed of three domains: cap, rim and stem. PFTs are expressed as soluble monomers and assemble to form a transmembrane ß-barrel pore in the erythrocyte cell membrane. The stem domain undergoes dramatic conformational changes to form a pore. Staphylococcal PFTs are classified into two groups: one-component α-hemolysin (α-HL) and two-component γ-hemolysin (γ-HL). The α-HL forms a homo-heptamer, whereas γ-HL is an octamer composed of F-component (LukF) and S-component (Hlg2). Because PFTs are used as materials for nanopore-based sensors, knowledge of the functional properties of PFTs is used to develop new, engineered PFTs. However, it remains challenging to design PFTs with a ß-barrel pore because their formation as transmembrane protein assemblies requires large conformational changes. In the present study, aiming to investigate the design principles of the ß-barrel formed as a consequence of the conformational change, chimeric mutants composed of the cap/rim domains of α-HL and the stem of LukF or Hlg2 were prepared. Biochemical characterization and electron microscopy showed that one of them assembles as a heptameric one-component PFT, whereas another participates as both a heptameric one- and heptameric/octameric two-component PFT. All chimeric mutants intrinsically assemble into SDS-resistant oligomers. Based on these observations, the role of the stem domain of these PFTs is discussed. These findings provide clues for the engineering of staphylococcal PFT ß-barrels for use in further promising applications.


Assuntos
Toxinas Bacterianas , Proteínas Hemolisinas , Toxinas Bacterianas/metabolismo , Proteínas Hemolisinas/metabolismo , Hemólise , Leucocidinas/química , Leucocidinas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
11.
J Biosci Bioeng ; 133(2): 181-186, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34789414

RESUMO

Attempts to create complex molecular systems that mimic parts of cellular systems using a bottom-up approach have become important in the field of biology. Among various molecular systems, in vitro protein synthesis inside lipid vesicles (liposomes), which we refer to as the artificial cell, has become an attractive system because it possesses two fundamental features of living cells: central dogma, and compartmentalization. Here, we investigated the effect of altering the amount or concentration of four constituents of the artificial cell consisting of a commercially available reconstituted in vitro transcription-translation (IVTT) system. As this IVTT system is available worldwide, the results will be useful to the scientific community when shared, unlike those from a lab-made IVTT system. We succeeded in revealing the effect and trend of altering each parameter and identified a suitable condition for preparing liposomes that are unilamellar and can synthesize proteins equally as well as the original IVTT system. Because the commercially available reconstituted IVTT system is an important standardization tool and the constituents can be adjusted as desired, our results will be useful for the bottom-up creation of more complex molecular systems.


Assuntos
Células Artificiais , Lipossomos , Proteínas
12.
PLoS Genet ; 17(7): e1009683, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34319983

RESUMO

Long noncoding RNAs (lncRNAs) are vastly transcribed and extensively studied but lncRNAs overlapping with the sense orientation of mRNA have been poorly studied. We analyzed the lncRNA DAPALR overlapping with the 5´ UTR of the Doublesex1 (Dsx1), the male determining gene in Daphnia magna. By affinity purification, we identified an RNA binding protein, Shep as a DAPALR binding protein. Shep also binds to Dsx1 5´ UTR by recognizing the overlapping sequence and suppresses translation of the mRNA. In vitro and in vivo analyses indicated that DAPALR increased Dsx1 translation efficiency by sequestration of Shep. This regulation was impaired when the Shep binding site in DAPALR was deleted. These results suggest that Shep suppresses the unintentional translation of Dsx1 by setting a threshold; and when the sense lncRNA DAPALR is expressed, DAPALR cancels the suppression caused by Shep. This mechanism may be important to show dimorphic gene expressions such as sex determination and it may account for the binary expression in various developmental processes.


Assuntos
Regulação da Expressão Gênica/genética , RNA Longo não Codificante/genética , Processos de Determinação Sexual/genética , Regiões 5' não Traduzidas/genética , Animais , Sítios de Ligação/genética , Proteínas de Ligação a DNA/genética , Daphnia/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Masculino , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
13.
Sci Rep ; 11(1): 7326, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795753

RESUMO

The cladoceran crustacean Daphnia has long been a model of energy allocation studies due to its important position in the trophic cascade of freshwater ecosystems. However, the loci for controlling energy allocation between life history traits still remain unknown. Here, we report CRISPR/Cas-mediated target mutagenesis of DNA methyltransferase 3.1 (DNMT3.1) that is upregulated in response to caloric restriction in Daphnia magna. The resulting biallelic mutant is viable and did not show any change in growth rate, reproduction, and longevity under nutrient rich conditions. In contrast, under starved conditions, the growth rate of this DNMT3.1 mutant was increased but its reproduction was reciprocally reduced compared to the wild type when the growth and reproduction activities competed during a period from instar 4 to 8. The life span of this mutant was significantly shorter than that of the wild type. We also compared transcriptomes between DNMT3.1 mutant and wild type under nutrient-rich and starved conditions. Consistent with the DNMT3.1 mutant phenotypes, the starved condition led to changes in the transcriptomes of the mutant including differential expression of vitellogenin genes. In addition, we found upregulation of the I am not dead yet (INDY) ortholog, which has been known to shorten the life span in Drosophila, explaining the shorter life span of the DNMT3.1 mutant. These results establish DNMT3.1 as a key regulator for life span and energy allocation between growth and reproduction during caloric restriction. Our findings reveal how energy allocation is implemented by selective expression of a DNMT3 ortholog that is widely distributed among animals. We also infer a previously unidentified adaptation of Daphnia that invests more energy for reproduction than growth under starved conditions.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Daphnia/metabolismo , Privação de Alimentos , Longevidade , Adaptação Fisiológica , Alelos , Animais , Tamanho Corporal , Sistemas CRISPR-Cas , DNA Metiltransferase 3A , Regulação da Expressão Gênica , Características de História de Vida , Mitose , Biologia Molecular , Mutação , Fenótipo , RNA/metabolismo , RNA-Seq , Reprodução , Transcriptoma , Vitelogeninas/metabolismo
14.
Environ Toxicol Chem ; 40(5): 1279-1288, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33338286

RESUMO

The freshwater crustacean Daphnia magna has traditionally been a model for ecotoxicological studies owing to its sensitivity to many xenobiotics. Because it is used in many toxicity assessments, its detoxification mechanism for xenobiotics is important and requires further study. However, studies related to detoxification genes are limited to transcriptomic profiling, and there are no D. magna mutants for use in the understanding of xenobiotic metabolism in vivo. We report the generation of a D. magna CYP360A8 mutant-the gene is a cytochrome P450 (CYP) clan 3 gene. Based on RNA sequencing of adult D. magna, we found that CYP360A8 has the highest expression level among all CYP genes. At ovarian maturation, its expression level is up-regulated 6-fold compared to the juvenile stages and is maintained thereafter. Using the CRISPR/CRISPR-associated 9 (Cas9) system, we disrupted CYP360A8 by coinjecting CYP360A8-targeting guide RNA and Cas9 proteins into D. magna eggs and established one monoallelic CYP360A8 mutant line. This CYP360A8 mutant had a higher sensitivity to the herbicide paraquat compared to the wild type. We confirmed the up-regulation of CYP360A8 by paraquat. The results demonstrate the role of CYP360A8 in paraquat detoxification. The present study establishes a CYP mutant of D. magna, and this strategy can be a basic platform to document a range of CYP gene-xenobiotic relationships in this species. Environ Toxicol Chem 2021;40:1279-1288. © 2020 SETAC.


Assuntos
Daphnia , Poluentes Químicos da Água , Animais , Sistema Enzimático do Citocromo P-450/genética , Daphnia/genética , Mutação , Paraquat/toxicidade , Poluentes Químicos da Água/toxicidade
15.
Genesis ; 59(3): e23403, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33348442

RESUMO

The ABC transporter, Scarlet, and its binding partner, White are involved in pigment synthesis in the insect eye and mutations in these genes are used as genetic markers. Recent studies have suggested that these transporters also have additional functions in the neuronal system. In our previous study, we generated scarlet mutant in the small crustacean, Daphnia magna and showed that the mutant lacked the eye pigment in the mutant. Here, we show that the scarlet mutant exhibits spinning behavior. This phenotype is partly associated with the presence of light. Metabolomic analysis of a juvenile mutant revealed that the scarlet mutant has approximately one-tenth of the histamine content of the wild type. Application of histamine to the scarlet mutant rescued the spinning behavior in juveniles, suggesting that the spinning behavior of the mutant is caused by the reduction of histamine. However, the altered behavior was not rescued in the adult mutant by the addition of histamine, suggesting that Scarlet plays an irreversible role in the development of histaminergic neurons. These results suggest that Scarlet plays an important role in histaminergic signaling, which might be related to control the spinning behavior, in addition to its role in eye pigmentation.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Daphnia/fisiologia , Histamina/metabolismo , Pigmentação/genética , Pigmentos Biológicos/metabolismo , Animais , Comportamento Animal/fisiologia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Luz , Mutação , Fenótipo
16.
Sci Rep ; 10(1): 21490, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293611

RESUMO

Aquatic heavy metal pollution is a growing concern. To facilitate heavy metal monitoring in water, we developed transgenic Daphnia that are highly sensitive to heavy metals and respond to them rapidly. Metallothionein A, which was a metal response gene, and its promoter region was obtained from Daphnia magna. A chimeric gene fusing the promoter region with a green fluorescent protein (GFP) gene was integrated into D. magna using the TALEN technique and transgenic Daphnia named D. magna MetalloG were produced. When D. magna MetalloG was exposed to heavy metal solutions for 1 h, GFP expression was induced only in their midgut and hepatopancreas. The lowest concentrations of heavy metals that activated GFP expression were 1.2 µM Zn2+, 130 nM Cu2+, and 70 nM Cd2+. Heavy metal exposure for 24 h could lower the thresholds even further. D. magna MetalloG facilitates aqueous heavy metal detection and might enhance water quality monitoring.


Assuntos
Daphnia/genética , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Fluorescência , Engenharia Genética/métodos , Metalotioneína/metabolismo , Metais Pesados/toxicidade , Água/análise , Água/química , Poluentes Químicos da Água/metabolismo
17.
Genesis ; 58(12): e23396, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33205551

RESUMO

DNA methylation plays an important role in many aspects of biology, including development, disease, and phenotypic plasticity. In the branchiopod crustacean, Daphnia, de novo DNA methylation has been detected in specific environmental contexts. However, fundamental information on de novo DNA methyltransferase DNMT3 orthologs, including domain organization, developmental expression, and response to environmental stimuli, is lacking. In this study, we examined two DNMT3 orthologs in Daphnia magna, DapmaDNMT3.1 and DapmaDNMT3.2. Amino acid sequence alignment revealed that DapmaDNMT3.1 and DapmaDNMT3.2 lack the conserved methyltransferase motifs of the catalytic domain and the PWWP domain, respectively. We profiled the expression of the two orthologs during embryogenesis and under various feeding levels. During embryogenesis, in contrast to the low DapmaDNMT3.1 expression, DapmaDNTM3.2 was highly expressed at specific stages, that is, in the one cell-stage and at 48 hr post ovulation. In nutrient-rich condition, both genes were lowly expressed, whereas DapmaDNMT3.1 was upregulated at the lower food levels, suggesting a potential role of DapmaDNMT3.1 in gene regulation in response to caloric restriction. These findings provide a basis for understanding the developmental stage- and stress-dependent function of DNMT3 orthologs in D. magna.


Assuntos
Restrição Calórica , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Daphnia/genética , Sequência de Aminoácidos , Animais , Domínio Catalítico , DNA (Citosina-5-)-Metiltransferases/genética , Daphnia/embriologia , Métodos de Alimentação , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Regulação para Cima
18.
PLoS One ; 15(10): e0239893, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33035251

RESUMO

The ecdysteroid and sesquiterpenoid pathways control growth, developmental transition, and embryogenesis in insects. However, the function of orthologous genes and the cross-talk between both pathways remain largely uncharacterized in non-insect arthropods. Spook (Spo) and Juvenile hormone acid o-methyltransferase (Jhamt) have been suggested to function as rate-limiting factors in ecdysteroid and sesquiterpenoid biosynthesis, respectively, in insects. In this study, we report on the functions of Spo and Jhamt and the cross-talk between them in embryos of the branchiopod crustacean Daphnia magna. Spo expression was activated at the onset of gastrulation, with the depletion of Spo transcript by RNAi resulting in developmental arrest at this stage. This phenotype could be partially rescued by supplementation with 20-hydroxyecdysone, indicating that Spo may play the same role in ecdysteroid biosynthesis in early embryos, as reported in insects. After hatching, Spo expression was repressed, while Jhamt expression was activated transiently, despite its silencing during other embryonic stages. Jhamt RNAi showed little effect on survival, but shortened the embryonic period. Exposure to the sesquiterpenoid analog Fenoxycarb extended the embryonic period and rescued the Jhamt RNAi phenotype, demonstrating a previously unidentified role of sesquiterpenoid in the repression of precocious embryogenesis. Interestingly, the knockdown of Jhamt resulted in the derepression of ecdysteroid biosynthesis genes, including Spo, similar to regulation during insect hormonal biosynthesis. Sesquiterpenoid signaling via the Methoprene-tolerant gene was found to be responsible for the repression of ecdysteroid biosynthesis genes. It upregulated an ortholog of CYP18a1 that degrades ecdysteroid in insects. These results illuminate the conserved and specific functions of the ecdysteroid and sesquiterpenoid pathways in Daphnia embryos. We also infer that the common ancestor of branchiopod crustaceans and insects exhibited antagonism between the two endocrine hormones before their divergence 400 million years ago.


Assuntos
Daphnia/genética , Ecdisteroides/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sesquiterpenos/metabolismo , Animais , Daphnia/embriologia , Daphnia/metabolismo , Ecdisteroides/genética , Evolução Molecular , Metiltransferases/genética , Metiltransferases/metabolismo
19.
PLoS One ; 15(8): e0238256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866176

RESUMO

In recent years, the binary definition of sex is being challenged by repetitive reports about individuals with ambiguous sexual identity from various animal groups. This has created an urge to decode the molecular mechanism underlying sexual development. However, sexual ambiguities are extremely uncommon in nature, limiting their experimental value. Here, we report the establishment of a genetically modified clone of Daphnia magna from which intersex daphniids can be readily generated. By mutating the conserved central sex determining factor Doublesex1, body-wide feminization of male daphniid could be achieved. Comparative transcriptomic analysis also revealed a genetic network correlated with Doublesex1 activity which may account for the establishment of sexual identity in D. magna. We found that Dsx1 repressed genes related to growth and promoted genes related to signaling. We infer that different intersex phenotypes are the results of fluctuation in activity of these Dsx1 downstream factors. Our results demonstrated that the D. magna genome is capable of expressing sex in a continuous array, supporting the idea that sex is actually a spectrum.


Assuntos
Daphnia/genética , Daphnia/fisiologia , Transtornos do Desenvolvimento Sexual/genética , Redes Reguladoras de Genes/genética , Desenvolvimento Sexual/genética , Sequência de Aminoácidos , Animais , Genoma/genética , Fenótipo , Transcriptoma/genética
20.
Nature ; 585(7823): 129-134, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32848250

RESUMO

Transmembrane channels and pores have key roles in fundamental biological processes1 and in biotechnological applications such as DNA nanopore sequencing2-4, resulting in considerable interest in the design of pore-containing proteins. Synthetic amphiphilic peptides have been found to form ion channels5,6, and there have been recent advances in de novo membrane protein design7,8 and in redesigning naturally occurring channel-containing proteins9,10. However, the de novo design of stable, well-defined transmembrane protein pores that are capable of conducting ions selectively or are large enough to enable the passage of small-molecule fluorophores remains an outstanding challenge11,12. Here we report the computational design of protein pores formed by two concentric rings of α-helices that are stable and monodisperse in both their water-soluble and their transmembrane forms. Crystal structures of the water-soluble forms of a 12-helical pore and a 16-helical pore closely match the computational design models. Patch-clamp electrophysiology experiments show that, when expressed in insect cells, the transmembrane form of the 12-helix pore enables the passage of ions across the membrane with high selectivity for potassium over sodium; ion passage is blocked by specific chemical modification at the pore entrance. When incorporated into liposomes using in vitro protein synthesis, the transmembrane form of the 16-helix pore-but not the 12-helix pore-enables the passage of biotinylated Alexa Fluor 488. A cryo-electron microscopy structure of the 16-helix transmembrane pore closely matches the design model. The ability to produce structurally and functionally well-defined transmembrane pores opens the door to the creation of designer channels and pores for a wide variety of applications.


Assuntos
Simulação por Computador , Genes Sintéticos/genética , Canais Iônicos/química , Canais Iônicos/genética , Modelos Moleculares , Biologia Sintética , Linhagem Celular , Microscopia Crioeletrônica , Cristalografia por Raios X , Condutividade Elétrica , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrazinas , Canais Iônicos/metabolismo , Transporte de Íons , Lipossomos/metabolismo , Técnicas de Patch-Clamp , Porinas/química , Porinas/genética , Porinas/metabolismo , Engenharia de Proteínas , Estrutura Secundária de Proteína , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA