Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109170, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405610

RESUMO

The inherent variability in cell culture techniques hinders their reproducibility. To address this issue, we introduce a comprehensive cell observation device. This new approach enhances the features of existing home-use scanners by implementing a pattern sheet. Compared with fluorescent staining, our method over- or underestimated the cell count by a mere 5%. The proposed technique showcased a strong correlation with conventional methodologies, displaying R2 values of 0.91 and 0.99 compared with the standard chamber and fluorescence methods, respectively. Simulations of microscopic observations indicated the potential to estimate accurately the total cell count using just 20 fields of view. Our proposed cell-counting device offers a straightforward, noninvasive means of measuring the number of cultured cells. By harnessing the power of deep learning, this device ensures data integrity, thereby making it an attractive option for future cell culture research.

2.
Methods Mol Biol ; 2763: 403-414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347430

RESUMO

Mucus is part of the innate immune system that defends the mucosa against microbiota and other infectious threats. The mechanical characteristics of mucus, such as viscosity, elasticity, and lubricity, are critically involved in its barrier function. However, assessing the mechanical properties of mucus remains challenging because of technical limitations. Thus, a new approach that characterizes the mechanical properties of mucus on colonic tissues needs to be developed. Here, we describe a novel strategy to characterize the ex vivo mechanical properties of mucus on colonic tissues using atomic force microscopy. This description includes the preparation of the mouse colon sample, AFM calibration, and determining the elasticity (Young's modulus, E [kPa]) of the mucus layer in the colon.


Assuntos
Microscopia de Força Atômica , Animais , Camundongos , Elasticidade , Módulo de Elasticidade
3.
J Phys Chem Lett ; 15(4): 1097-1104, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262433

RESUMO

Interference reflection microscopy (IRM) is a powerful, label-free technique to visualize the surface structure of biospecimens. However, stray light outside a focal plane obscures the surface fine structures beyond the diffraction limit (dxy ≈ 200 nm). Here, we developed an advanced interferometry approach to visualize the surface fine structure of complex biospecimens, ranging from protein assemblies to single cells. Compared to 2-D, our unique 3-D structure illumination introduced to IRM enabled successful visualization of fine structures and the dynamics of protein crystal growth under lateral (dx-y ≈ 110 nm) and axial (dx-z ≤ 5 nm) resolutions and dynamical adhesion of microtubule fiber networks with lateral resolution (dx-y ≈ 120 nm), 10 times greater than unstructured IRM (dx-y ≈ 1000 nm). Simultaneous reflection/fluorescence imaging provides new physical fingerprints for studying complex biospecimens and biological processes such as myogenic differentiation and highlights the potential use of advanced interferometry to study key nanostructures of complex biospecimens.


Assuntos
Interferometria , Iluminação , Microscopia de Interferência/métodos , Microtúbulos , Proteínas
4.
STAR Protoc ; 4(3): 102471, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37515762

RESUMO

Synthetic protocols providing mechanical patterns to culture substrate are essential to control the self-condensation of cells for organoid engineering. Here, we present a protocol for preparing hydrogels with mechanical patterns. We describe steps for hydrogel synthesis, mechanical evaluation of the substrate, and time-lapse imaging of cell self-organization. This protocol will facilitate the rational design of culture substrates with mechanical patterns for the engineering of various functional organoids. For complete details on the use and execution of this protocol, please refer to Takebe et al. (2015) and Matsuzaki et al. (2014, 2022).1,2,3.


Assuntos
Hidrogéis , Organoides
5.
Mucosal Immunol ; 16(5): 624-641, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37385587

RESUMO

In the intestine, mucin 2 (Muc2) forms a network structure and prevents bacterial invasion. Glycans are indispensable for Muc2 barrier function. Among various glycosylation patterns of Muc2, sialylation inhibits bacteria-dependent Muc2 degradation. However, the mechanisms by which Muc2 creates the network structure and sialylation prevents mucin degradation remain unknown. Here, by focusing on two glycosyltransferases, St6 N-acetylgalactosaminide α-2,6-sialyltransferase 6 (St6galnac6) and ß-1,3-galactosyltransferase 5 (B3galt5), mediating the generation of desialylated glycans, we show that sialylation forms the network structure of Muc2 by providing negative charge and hydrophilicity. The colonic mucus of mice lacking St6galnac6 and B3galt5 was less sialylated, thinner, and more permeable to microbiota, resulting in high susceptibility to intestinal inflammation. Mice with a B3galt5 mutation associated with inflammatory bowel disease (IBD) also showed the loss of desialylated glycans of mucus and the high susceptibility to intestinal inflammation, suggesting that the reduced sialylation of Muc2 is associated with the pathogenesis of IBD. In mucins of mice with reduced sialylation, negative charge was reduced, the network structure was disturbed, and many bacteria invaded. Thus, sialylation mediates the negative charging of Muc2 and facilitates the formation of the mucin network structure, thereby inhibiting bacterial invasion in the colon to maintain gut homeostasis.

6.
Bioconjug Chem ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763006

RESUMO

Bio-orthogonal ligations that crosslink living cells with a substrate or other cells require high stability and rapid kinetics to maintain the nature of target cells. In this study, we report water-soluble cyclooctadiyne (WS-CODY) derivatives that undergo an ion-pair enhanced double-click reaction. The cationic side chain of WS-CODY accelerated the kinetics on the azide-modified cell surface due to proximity effect. Cationic WS-CODY was able to crosslink azide-modified, poorly adherent human lung cancer PC-9 cells not only to azide-grafted glass substrates but also to other cells within 5-30 min. We discovered that cell-substrate crosslinking induced the ITGA5 gene expression, whereas cell-cell crosslinking induced the CTNNA1 gene, according to the adhesion partner. Ion-pair-enhanced WS-CODY can be applied to a wide range of cells with established azide modifications and is expected to provide a powerful tool to regulate cell-substrate and cell-cell interactions.

7.
iScience ; 25(10): 105109, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36317160

RESUMO

Spatially controlled self-organization represents a major challenge for organoid engineering. We have developed a mechanically patterned hydrogel for controlling self-condensation process to generate multi-cellular organoids. We first found that local stiffening with intrinsic mechanical gradient (IG > 0.008) induced single condensates of mesenchymal myoblasts, whereas the local softening led to stochastic aggregation. Besides, we revealed the cellular mechanism of two-step self-condensation: (1) cellular adhesion and migration at the mechanical boundary and (2) cell-cell contraction driven by intercellular actin-myosin networks. Finally, human pluripotent stem cell-derived hepatic progenitors with mesenchymal/endothelial cells (i.e., liver bud organoids) experienced collective migration toward locally stiffened regions generating condensates of the concave to spherical shapes. The underlying mechanism can be explained by force competition of cell-cell and cell-hydrogel biomechanical interactions between stiff and soft regions. These insights will facilitate the rational design of culture substrates inducing symmetry breaking in self-condensation of differentiating progeny toward future organoid engineering.

8.
J Phys Chem Lett ; 13(40): 9494-9500, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36201238

RESUMO

Cell-coupled field-effect transistor (FET) biosensors have attracted considerable attention because of their high sensitivity to biomolecules. The use of insect cells (Sf21) as a core sensor element is advantageous due to their stable adhesion to sensors at room temperature. Although visualization of the insect cell-substrate interface leads to logical amplification of signals, the spatiotemporal processes at the interfaces have not yet been elucidated. We quantitatively monitored the adhesion dynamics of Sf21 using interference reflection microscopy (IRM). Specific adhesion signatures with ring-like patches along the cellular periphery were detected. A combination of zeta potential measurements and lectin staining identified specific glycoconjugates with low electrostatic potentials. The ring-like structures were disrupted after cholesterol depletion, suggesting a raft domain along the cell periphery. Our results indicate dynamic and asymmetric cell adhesion is due to low electrostatic repulsion with fluidic sugar rafts. We envision the logical design of cell-sensor interfaces with an electrical model that accounts for actual adhesion interfaces.


Assuntos
Colesterol , Lectinas , Animais , Adesão Celular , Glicoconjugados , Insetos , Açúcares , Temperatura
9.
Stem Cell Res Ther ; 13(1): 177, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505370

RESUMO

OBJECTIVES: Synovial mesenchymal stem cells (MSCs) have high freeze-thaw tolerance, whereas human umbilical vein endothelial cells (HUVECs) have low freezing tolerance. The differences in cell type-specific freeze-thaw tolerance and the mechanisms involved are unclear. This study thus aimed to identify the biological and physical factors involved in the differences in freeze-thaw tolerance between MSCs and HUVECs. MATERIALS AND METHODS: For biological analysis, MSC and HUVEC viability after freeze-thawing and alteration of gene expression in response to dimethyl sulfoxide (DMSO, a cryoprotectant) were quantitatively evaluated. For physical analysis, the cell membrane fluidity of MSCs and HUVECs before and after DMSO addition was assessed using a histogram for generalized polarization frequency. RESULTS: HUVECs showed lower live cell rates and higher gene expression alteration related to extracellular vesicles in response to DMSO than MSCs. Fluidity measurements revealed that the HUVEC membrane was highly fluidic and sensitive to DMSO compared to that of MSCs. Addition of CAY10566, an inhibitor of stearoyl-coA desaturase (SCD1) that produces highly fluidic desaturated fatty acids, decreased the fluidity of HUVECs and increased their tolerance to DMSO. The combination of CAY10566 and antioxidant glutathione (GSH) treatment improved HUVEC viability from 57 to 69%. Membrane fluidity alteration may thus contribute to pore-induced DMSO influx into the cytoplasm and reactive oxygen species production, leading to greater cytotoxicity in HUVECs, which have low antioxidant capacity. CONCLUSIONS: Differences in freeze-thaw tolerance originate from differences in the cell membranes with respect to fluidity and antioxidant capacity. These findings provide a basis for analyzing cell biology and membrane-physics to establish appropriate long-term preservation methods aimed at promoting transplantation therapies.


Assuntos
Dimetil Sulfóxido , Células-Tronco Mesenquimais , Antioxidantes , Membrana Celular/metabolismo , Dimetil Sulfóxido/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fluidez de Membrana , Células-Tronco Mesenquimais/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-34444107

RESUMO

The cerebellum, a brain region with a high degree of plasticity, is pivotal in motor control, learning, and cognition. The cerebellar reserve is the capacity of the cerebellum to respond and adapt to various disorders via resilience and reversibility. Although structural and functional recovery has been reported in mammals and has attracted attention regarding treatments for cerebellar dysfunction, such as spinocerebellar degeneration, the regulatory mechanisms of the cerebellar reserve are largely unidentified, particularly at the circuit level. Herein, we established an optical approach using zebrafish, an ideal vertebrate model in optical techniques, neuroscience, and developmental biology. By combining two-photon laser ablation of the inferior olive (IO) and long-term non-invasive imaging of "the whole brain" at a single-cell resolution, we succeeded in visualization of the morphological changes occurring in the IO neuron population and showed at a single-cell level that structural remodeling of the olivocerebellar circuit occurred in a relatively short period. This system, in combination with various functional analyses, represents a novel and powerful approach for uncovering the mechanisms of the cerebellar reserve, and highlights the potential of the zebrafish model to elucidate the organizing principles of neuronal circuits and their homeostasis in health and disease.


Assuntos
Terapia a Laser , Núcleo Olivar , Animais , Cerebelo/diagnóstico por imagem , Neurônios , Peixe-Zebra
11.
Chem Pharm Bull (Tokyo) ; 68(12): 1123-1130, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33268644

RESUMO

Over the past 30 years, research of green tea polyphenols, especially (-)-epigallocatechin gallate (EGCG), has revealed that consumption of green tea is a practical and effective primary cancer prevention method for the general population. More recently, we believe that green tea polyphenols are beneficial for tertiary cancer prevention using green tea alone or combined with anticancer drugs because EGCG has the potential to inhibit metastatic progression and stemness, and enhance antitumor immunity. In an effort to identify a common underlying mechanism responsible for EGCG's multifunctional effects on various molecular targets, we studied the biophysical effects of EGCG on cell stiffness using atomic force microscopy. We found that EGCG acts to stiffen the membranes of cancer cells, leading to inhibition of signaling pathways of various receptors. Stiffening of membranes with EGCG inhibited AXL receptor tyrosine kinase, a stimulator of cell softening, motility and stemness, and expression of programmed cell death-ligand 1. This review covers the following: i) primary cancer prevention using EGCG or green tea, ii) tertiary cancer prevention by combining EGCG and anticancer drugs, iii) inhibition of metastasis with EGCG by stiffening the cell membrane, iv) inhibition of AXL receptor tyrosine kinase, a stimulator of cell softening and motility, with EGCG, v) inhibition of stemness properties with EGCG, and vi) EGCG as an alternative chemical immune checkpoint inhibitor. Development of new drugs that enhance stiffening of cancer cell membranes may be an effective strategy for tertiary cancer prevention and treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Membrana Celular/efeitos dos fármacos , Neoplasias/prevenção & controle , Polifenóis/farmacologia , Chá/química , Antineoplásicos Fitogênicos/química , Membrana Celular/metabolismo , Humanos , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Polifenóis/química
12.
Plant Biotechnol (Tokyo) ; 37(4): 405-415, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33850427

RESUMO

Intracellular sedimentation of highly dense, starch-filled amyloplasts toward the gravity vector is likely a key initial step for gravity sensing in plants. However, recent live-cell imaging technology revealed that most amyloplasts continuously exhibit dynamic, saltatory movements in the endodermal cells of Arabidopsis stems. These complicated movements led to questions about what type of amyloplast movement triggers gravity sensing. Here we show that a confocal microscope equipped with optical tweezers can be a powerful tool to trap and manipulate amyloplasts noninvasively, while simultaneously observing cellular responses such as vacuolar dynamics in living cells. A near-infrared (λ=1064 nm) laser that was focused into the endodermal cells at 1 mW of laser power attracted and captured amyloplasts at the laser focus. The optical force exerted on the amyloplasts was theoretically estimated to be up to 1 pN. Interestingly, endosomes and trans-Golgi network were trapped at 30 mW but not at 1 mW, which is probably due to lower refractive indices of these organelles than that of the amyloplasts. Because amyloplasts are in close proximity to vacuolar membranes in endodermal cells, their physical interaction could be visualized in real time. The vacuolar membranes drastically stretched and deformed in response to the manipulated movements of amyloplasts by optical tweezers. Our new method provides deep insights into the biophysical properties of plant organelles in vivo and opens a new avenue for studying gravity-sensing mechanisms in plants.

13.
Stem Cell Reports ; 11(4): 852-860, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30197117

RESUMO

Cellular membrane fluidity is a critical modulator of cell adhesion and migration, prompting us to define the systematic landscape of lineage-specific cellular fluidity throughout differentiation. Here, we have unveiled membrane fluidity landscapes in various lineages ranging from human pluripotency to differentiated progeny: (1) membrane rigidification precedes the exit from pluripotency, (2) membrane composition modulates activin signaling transmission, and (3) signatures are relatively germ layer specific presumably due to unique lipid compositions. By modulating variable lineage-specific fluidity, we developed a label-free "adhesion sorting (AdSort)" method with simple cultural manipulation, effectively eliminating pluripotent stem cells and purifying target population as a result of the over 1,150 of screened conditions combining compounds and matrices. These results underscore the important role of tunable membrane fluidity in influencing stem cell maintenance and differentiation that can be translated into lineage-specific cell purification strategy.


Assuntos
Linhagem da Célula , Fluidez de Membrana , Adesão Celular , Diferenciação Celular , Membrana Celular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Cinética
14.
Phys Chem Chem Phys ; 19(30): 19937-19947, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28721420

RESUMO

Physical interactions of four major green tea catechin derivatives with cell membrane models were systemically investigated. Catechins with the galloyl moiety caused the aggregation of small unilamellar vesicles and an increase in the surface pressure of lipid monolayers, while those without did not. Differential scanning calorimetry revealed that, in a low concentration regime (≤10 µM), catechin molecules are not significantly incorporated into the hydrophobic core of lipid membranes as substitutional impurities. Partition coefficient measurements revealed that the galloyl moiety of catechin and the cationic quaternary amine of lipids dominate the catechin-membrane interaction, which can be attributed to the combination of electrostatic and cation-π interactions. Finally, we shed light on the mechanical consequence of catechin-membrane interactions using the Fourier-transformation of the membrane fluctuation. Surprisingly, the incubation of cell-sized vesicles with 1 µM galloyl catechins, which is comparable to the level in human blood plasma after green tea consumption, significantly increased the bending stiffness of the membranes by a factor of more than 60, while those without the galloyl moiety had no detectable influence. Atomic force microscopy and circular dichroism spectroscopy suggest that the membrane stiffening is mainly attributed to the adsorption of galloyl catechin aggregates to the membrane surfaces. These results contribute to our understanding of the physical and thus the generic functions of green tea catechins in therapeutics, such as cancer prevention.


Assuntos
Catequina/análogos & derivados , Bicamadas Lipídicas/química , Adsorção , Varredura Diferencial de Calorimetria , Catequina/química , Catequina/metabolismo , Dicroísmo Circular , Difusão Dinâmica da Luz , Humanos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Microscopia de Força Atômica
15.
Molecules ; 21(11)2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27869750

RESUMO

Green tea catechin and green tea extract are now recognized as non-toxic cancer preventives for humans. We first review our brief historical development of green tea cancer prevention. Based on exciting evidence that green tea catechin, (-)-epigallocatechin gallate (EGCG) in drinking water inhibited lung metastasis of B16 melanoma cells, we and other researchers have studied the inhibitory mechanisms of metastasis with green tea catechins using biomechanical tools, atomic force microscopy (AFM) and microfluidic optical stretcher. Specifically, determination of biophysical properties of cancer cells, low cell stiffness, and high deformability in relation to migration, along with biophysical effects, were studied by treatment with green tea catechins. The study with AFM revealed that low average values of Young's moduli, indicating low cell stiffness, are closely associated with strong potential of cell migration and metastasis for various cancer cells. It is important to note that treatments with EGCG and green tea extract elevated the average values of Young's moduli resulting in increased stiffness (large elasticity) of melanomas and various cancer cells. We discuss here the biophysical basis of multifunctions of green tea catechins and green tea extract leading to beneficial effects for cancer prevention and treatment.


Assuntos
Fenômenos Bioquímicos , Catequina/farmacologia , Neoplasias/prevenção & controle , Chá/química , Animais , Catequina/análogos & derivados , Catequina/química , Catequina/uso terapêutico , Movimento Celular/efeitos dos fármacos , Humanos , Microfluídica , Microscopia de Força Atômica , Fenômenos Ópticos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
16.
In Vitro Cell Dev Biol Anim ; 52(8): 799-805, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27251159

RESUMO

The main constituent of green tea, (-)-Epigallocatechin-3-O-gallate (EGCG), is known to have cancer-specific chemopreventive effects. In the present work, we investigated how EGCG suppresses cell adhesion by comparing the adhesion of human pancreatic cancer cells (AsPC-1 and BxPC-3) and their counterpart, normal human embryonic pancreas-derived cells (1C3D3), in catechin-containing media using organosilane monolayer templates (OMTs). The purpose of this work is (1) to evaluate the quantitativeness in the measurement of cell adhesion with the OMT and (2) to show how green-tea catechins suppress cell adhesion in a cancer-specific manner. For the first purpose, the adhesion of cancer and normal cells was compared using the OMT. The cell adhesion in different type of catechins such as EGCG, (-)-Epicatechin-3-O-gallate (ECG) and (-)-Epicatechin (EC) was also evaluated. The measurements revealed that the anti-adhesion effect of green-tea catechins is cancer-specific, and the order is EGCG≫ECG>EC. The results agree well with the data reported to date, showing the quantitativeness of the new method. For the second purpose, the contact area of cells on the OMT was measured by reflection interference contrast microscopy. The cell-OMT contact area of cancer cells decreases with increasing EGCG concentration, whereas that of normal cells remains constant. The results reveal a twofold action of EGCG on cancer cell adhesion-suppressing cell attachment to a candidate adhesion site and decreasing the contact area of the cells-and validates the use of OMT as a tool for screening cancer cell adhesion.


Assuntos
Catequina/análogos & derivados , Adesão Celular/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Catequina/administração & dosagem , Catequina/química , Linhagem Celular Tumoral , Humanos , Neoplasias Pancreáticas/patologia , Chá/química
17.
J Phys Chem B ; 120(7): 1221-7, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26845066

RESUMO

Adhesion of cancer cells with different metastatic potential and anticancer drug resistance has been quantitatively evaluated by using self-assembled monolayer (SAM)-patterned substrates and reflection interference contrast microscopy (RICM). Cell-adhesive SAM spots with optimized diameter could prevent cell-cell adhesion and thus allowed the systematic evaluation of statistically reliable numbers of contact area between single cancer cells and substrates by RICM. The statistical image analysis revealed that highly metastatic mouse melanoma cells showed larger contact area than lowly metastatic cells. We also found that both cancer cell types exhibited distinct transition from the "strong" to "weak" adhesion states with increase in the concentration of (-)-epigallocatechin gallate (EGCG), which is known to exhibit cancer preventive activity. Mathematical analysis of the adhesion transition revealed that adhesion of the highly metastatic mouse melanoma cells showed more EGCG tolerance than that of lowly metastatic cells. Moreover, time-lapse RICM observation revealed that EGCG weakened cancer cell adhesion in a stepwise manner, probably via focal adhesion complex. These results clearly indicate that contact area can be used as a quantitative measure for the determination of cancer phenotypes and their drug resistance, which will provide physical insights into the mechanism of cancer metastasis and cancer prevention.


Assuntos
Anticarcinógenos/farmacologia , Catequina/análogos & derivados , Adesão Celular/efeitos dos fármacos , Microscopia de Interferência/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Catequina/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/patologia
18.
Cell Stem Cell ; 16(5): 556-65, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25891906

RESUMO

Transplantation of in-vitro-generated organ buds is a promising approach toward regenerating functional and vascularized organs. Though it has been recently shown in the context of liver models, demonstrating the applicability of this approach to other systems by delineating the molecular mechanisms guiding organ bud formation is critical. Here, we demonstrate a generalized method for organ bud formation from diverse tissues by combining pluripotent stem cell-derived tissue-specific progenitors or relevant tissue samples with endothelial cells and mesenchymal stem cells (MSCs). The MSCs initiated condensation within these heterotypic cell mixtures, which was dependent upon substrate matrix stiffness. Defining optimal mechanical properties promoted formation of 3D, transplantable organ buds from tissues including kidney, pancreas, intestine, heart, lung, and brain. Transplanted pancreatic and renal buds were rapidly vascularized and self-organized into functional, tissue-specific structures. These findings provide a general platform for harnessing mechanical properties to generate vascularized, complex organ buds with broad applications for regenerative medicine.


Assuntos
Células Endoteliais/fisiologia , Rim/fisiologia , Células-Tronco Mesenquimais/fisiologia , Pâncreas/fisiologia , Células-Tronco Pluripotentes/fisiologia , Células-Tronco/fisiologia , Células Cultivadas , Matriz Extracelular/química , Humanos , Rim/irrigação sanguínea , Rim/citologia , Neovascularização Fisiológica , Técnicas de Cultura de Órgãos , Especificidade de Órgãos , Organogênese , Pâncreas/irrigação sanguínea , Pâncreas/citologia , Medicina Regenerativa , Transplante
19.
J Phys Chem Lett ; 5(1): 253-7, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26276209

RESUMO

Hydrogels with tunable elasticity has been widely used as micromechanical environment models for cells. However, the imaging of physical contacts between cells and hydrogels with a nanometer resolution along the optical axis remain challenging because of low reflectivity at hydrogel-liquid interface. In this work, we have developed an advanced interferometric optical microscopy for the high contrast visualization of cell-hydrogel contact. Here, reflection interference contrast microscopy (RICM) was modified with a confocal unit, high throughput optics and coherent monochromatic light sources to enhance interferometric signals from cell-hydrogel contact zones. The advanced interferomety clearly visualized physical contacts between cells and hydrogels, and thus enabled the quantitative evaluation of the area of cell-hydrogel adhesion.

20.
Stem Cells ; 32(3): 816-21, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24038678

RESUMO

In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies.


Assuntos
Orelha/anatomia & histologia , Cartilagem Elástica/citologia , Cartilagem Hialina/patologia , Articulações/patologia , Medicina Regenerativa , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Separação Celular , Células Clonais , Cães , Humanos , Transplante Autólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA