Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Antimicrob Agents Chemother ; 68(5): e0172723, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587392

RESUMO

Antiviral susceptibility of influenza viruses was assessed using a high-content imaging-based neutralization test. Cap-dependent endonuclease inhibitors, baloxavir and AV5116, were superior to AV5115 against type A viruses, and AV5116 was most effective against PA mutants tested. However, these three inhibitors displayed comparable activity (EC50 8-22 nM) against type C viruses from six lineages. Banana lectin and a monoclonal antibody, YA3, targeting the hemagglutinin-esterase protein effectively neutralized some, but not all, type C viruses.


Assuntos
Antivirais , Dibenzotiepinas , Triazinas , Antivirais/farmacologia , Humanos , Triazinas/farmacologia , Dibenzotiepinas/farmacologia , Gammainfluenzavirus/efeitos dos fármacos , Gammainfluenzavirus/genética , Morfolinas/farmacologia , Piridonas/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Células Madin Darby de Rim Canino , Cães , Ciclopropanos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Testes de Neutralização , Piridinas/farmacologia
2.
J Clin Virol ; 162: 105429, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031609

RESUMO

BACKGROUND: Influenza C virus is a pathogen that causes acute respiratory illness in children. The clinical information about this virus is limited because of the small number of isolated viruses compared to influenza A or B viruses. METHODS: A total of 60 influenza C viruses were isolated by clinical tests using cell culture methods conducted in one hospital and one clinic during the 15 years from 2006 to 2020. These 60 cases were retrospectively analyzed by comparing outpatients and inpatients. Moreover, isolated viruses were analyzed for genomic changes during the study period. RESULTS: All were younger than 7 years, and 73% of inpatients (19 out of 26) were under 2 years of age. A significant difference was found in the frequency of pneumonia, accounting for 45% and 4% of inpatients and outpatients, respectively. Most of the viruses isolated from 2006 to 2012 belonged to the S/A sublineage of the C/Sao Paulo lineage, but three sublineage viruses, including the S/A sublineage with K190N mutation, S/V sublineage, and C/Kanagawa lineage, have cocirculated since 2014. Moreover, S/A sublineage viruses were undergoing reassortment since 2014, suggesting significant changes in the virus, both antigenically and genetically. Of the 10 strains from patients with pneumonia, 7 were in the S/A sublineage, which had circulated from 2006 to 2012. CONCLUSION: Infants under 2 years of age were more likely to be hospitalized with pneumonia. The genomic changes that occurred in 2014 were suggested to affect the ability of the virus to spread.


Assuntos
Gammainfluenzavirus , Influenza Humana , Lactente , Criança , Humanos , Gammainfluenzavirus/genética , Pacientes Ambulatoriais , Pacientes Internados , Japão/epidemiologia , Estudos Retrospectivos , Brasil , Influenza Humana/epidemiologia
3.
J Med Virol ; 95(4): e28696, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951317

RESUMO

To investigate the antigenic changes in parechovirus 1 (PeVA1), seroepidemiological analyses were performed against the Harris strain (Harris), isolated in 1956, and PeVA1/Yamagata.JPN/2021-4785, isolated in 2021, using immune sera and 207 and 237 human serum specimens collected in 2021 and 1976, respectively. Although rabbit immune sera showed the highest neutralization antibody (NT-Ab) titers against the immunized viruses at 1:12 800-1:102 400, they were cross-reactive at 1:400-1:800. All 62 Yamagata isolates obtained between 2001 and 2021 (Yamagata strains), belonging to phylogenetic lineage 1B, reacted more strongly (mostly 4-64 times) to antiserum against PeVA1/Yamagata.JPN/2021-4785 than to antiserum against Harris, belonging to phylogenetic lineage 1 A. Human serum specimens obtained in 2021 showed higher NT-Ab titers against PeVA1/Yamagata.JPN/2021-4785, whereas those obtained in 1976 had similar NT-Ab titers against both strains. These findings suggested that Yamagata strains and Harris were antigenically cross-reactive, although there were differences. There are still high NT-Abs titers present against Harris in 2021 in particular, indicating that PeVA1 has been in circulation with high immunity in the population. In conclusion, this study suggested that PeVA1 has been endemically perpetuated with only minor antigenic changes as well as with high immunity over several decades in the community.


Assuntos
Influenza Humana , Parechovirus , Vírus , Animais , Humanos , Coelhos , Japão/epidemiologia , Filogenia , Soros Imunes , Influenza Humana/epidemiologia
4.
Viruses ; 15(1)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36680284

RESUMO

The emergence and spread of antiviral-resistant influenza viruses are of great concern. To minimize the public health risk, it is important to monitor antiviral susceptibilities of influenza viruses. Analyses of the antiviral susceptibilities of influenza A and B viruses have been conducted globally; however, those of influenza C and D viruses are limited. Here, we determined the susceptibilities of influenza C viruses representing all six lineages (C/Taylor, C/Yamagata, C/Sao Paulo, C/Aichi, C/Kanagawa, and C/Mississippi) and influenza D viruses representing four lineages (D/OK, D/660, D/Yama2016, and D/Yama2019) to RNA polymerase inhibitors (baloxavir and favipiravir) by using a focus reduction assay. All viruses tested were susceptible to both drugs. We then performed a genetic analysis to check for amino acid substitutions associated with baloxavir and favipiravir resistance and found that none of the viruses tested possessed these substitutions. Use of the focus reduction assay with the genotypic assay has proven valuable for monitoring the antiviral susceptibilities of influenza C and D viruses as well as influenza A and B viruses. Antiviral susceptibility monitoring of all influenza virus types should continue in order to assess the public health risks posed by these viruses.


Assuntos
Influenza Humana , Orthomyxoviridae , Humanos , Influenza Humana/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Brasil , Farmacorresistência Viral/genética
5.
J Virol ; 95(21): e0129621, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406864

RESUMO

Influenza C virus (ICV) has only one kind of spike protein, the hemagglutinin-esterase (HE) glycoprotein. HE functions similarly to hemagglutinin (HA) and neuraminidase of the influenza A and B viruses (IAV and IBV, respectively). It has a monobasic site, which is cleaved by some host enzymes. The cleavage is essential to activating the virus, but the enzyme or enzymes in the respiratory tract have not been identified. This study investigated whether the host serine proteases, transmembrane protease serine S1 member 2 (TMPRSS2) and human airway trypsin-like protease (HAT), which reportedly cleave HA of IAV/IBV, are involved in HE cleavage. We established TMPRSS2- and HAT-expressing MDCK cells (MDCK-TMPRSS2 and MDCK-HAT). ICV showed multicycle replication with HE cleavage without trypsin in MDCK-TMPRSS2 cells as well as IAV did. The HE cleavage and multicycle replication did not appear in MDCK-HAT cells infected with ICV without trypsin, while HA cleavage and multistep growth of IAV appeared in the cells. Amino acid sequences of the HE cleavage site in 352 ICV strains were completely preserved. Camostat and nafamostat suppressed the growth of ICV and IAV in human nasal surface epithelial (HNE) cells. Therefore, this study revealed that, at least, TMPRSS2 is involved in HE cleavage and suggested that nafamostat could be a candidate for therapeutic drugs for ICV infection. IMPORTANCE Influenza C virus (ICV) is a pathogen that causes acute respiratory illness, mostly in children, but there are no anti-ICV drugs. ICV has only one kind of spike protein, the hemagglutinin-esterase (HE) glycoprotein on the virion surface, which possesses receptor-binding, receptor-destroying, and membrane fusion activities. The HE cleavage is essential for the virus to be activated, but the enzyme or enzymes in the respiratory tract have not been identified. This study revealed that transmembrane protease serine S1 member 2 (TMPRSS2), and not human airway trypsin-like protease (HAT), is involved in HE cleavage. This is a novel study on the host enzymes involved in HE cleavage, and the result suggests that the host enzymes, such as TMPRSS2, may be a target for therapeutic drugs of ICV infection.


Assuntos
Gammainfluenzavirus/enzimologia , Gammainfluenzavirus/metabolismo , Hemaglutininas Virais/metabolismo , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Serina Endopeptidases/metabolismo , Proteínas Virais de Fusão/metabolismo , Sequência de Aminoácidos , Animais , Antivirais/farmacologia , Benzamidinas/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Cães , Ésteres/farmacologia , Guanidinas/farmacologia , Interações entre Hospedeiro e Microrganismos , Humanos , Células Madin Darby de Rim Canino , Tripsina/metabolismo , Proteínas Virais/metabolismo
6.
Viruses ; 13(3)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802440

RESUMO

The antigenicity of the hemagglutinin esterase (HE) glycoprotein of influenza C virus is known to be stable; however, information about residues related to antigenic changes has not yet been fully acquired. Using selection with anti-HE monoclonal antibodies, we previously obtained some escape mutants and identified four antigenic sites, namely, A-1, A-2, A-3, and Y-1. To confirm whether the residues identified as the neutralizing epitope possibly relate to the antigenic drift, we analyzed the growth kinetics of these mutants. The results showed that some viruses with mutations in antigenic site A-1 were able to replicate to titers comparable to that of the wild-type, while others showed reduced titers. The mutants possessing substitutions in the A-2 or A-3 site replicated as efficiently as the wild-type virus. Although the mutant containing a deletion at positions 192 to 195 in the Y-1 site showed lower titers than the wild-type virus, it was confirmed that this region in the 190-loop on the top side of the HE protein is not essential for viral propagation. Then, we revealed that antigenic changes due to substitutions in the A-1, A-3, and/or Y-1 site had occurred in nature in Japan for the past 30 years. These results suggest that some residues (i.e., 125, 176, 192) in the A-1 site, residue 198 in the A-3 site, and residue 190 in the Y-1 site are likely to mediate antigenic drift while maintaining replicative ability.


Assuntos
Variação Antigênica/imunologia , Antígenos Virais , Gammainfluenzavirus , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Cães , Gammainfluenzavirus/genética , Gammainfluenzavirus/imunologia , Células Madin Darby de Rim Canino
7.
J Med Virol ; 93(2): 945-951, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32720708

RESUMO

Human coronavirus OC43 (HCoV-OC43) is divided into genotypes A to H based on genetic recombination including the spike (S) gene. To investigate the longitudinal transition of the phylogenetic feature of the HCoV-OC43 S gene in a community, phylogenetic analysis of the S1 region of the S gene was conducted using 208 strains detected in Yamagata during 2010 to 2017 with reference strains of the genotype. The S1 sequences were divisible into four groups: A to D. All Yamagata strains belonged to either group B or group D. In group B, 46 (90.2%) out of 51 Yamagata strains were clustered with those of genotype E reference strains (cluster E). In group D, 28 (17.8%) and 122 (77.7%) out of 157 Yamagata strains were clustered, respectively, with genotype F and genotype G reference strains. In cluster G, 28 strains formed a distinct cluster. Monthly distributions of HCoV-OC43 in Yamagata in 2010 to 2017 revealed that group B and group D appeared one after another. In group B, the cluster E strains were prevalent recurrently. In conclusion, epidemics of HCoV-OC43 in Yamagata, Japan might be attributable to two genetically different groups: group B showed a recurrent epidemic of strains belonging to a single phylogenetic cluster and group D showed epidemic strains belonging to multiple clusters.


Assuntos
Infecções por Coronavirus/epidemiologia , Coronavirus Humano OC43/genética , Genótipo , Filogenia , Glicoproteína da Espícula de Coronavírus/genética , Adolescente , Adulto , Criança , Pré-Escolar , Infecções por Coronavirus/virologia , Coronavirus Humano OC43/classificação , Evolução Molecular , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , RNA Viral/genética , Recombinação Genética , Análise de Sequência de DNA , Adulto Jovem
8.
Jpn J Infect Dis ; 74(4): 285-292, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-33250494

RESUMO

Isolation of seasonal coronaviruses, which include human coronavirus (HCoV) OC43, HCoV-HKU1, and HCoV-NL63, from primary cultures is difficult because it requires experienced handling, an exception being HCoV-229E, which can be isolated using cell lines such as RD-18S and HeLa-ACE2-TMPRSS2. We aimed to isolate seasonal CoVs in Yamagata, Japan to obtain infective virions useful for further research and to accelerate fundamental studies on HCoVs and SARS-CoV-2. Using modified air-liquid interface (ALI) culture of the normal human airway epithelium from earlier studies, we isolated 29 HCoVs (80.6%: 16, 6, 6, and 1 isolates of HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E, respectively) from 36 cryopreserved nasopharyngeal specimens. In ALI cultures of HCoV-OC43 and HCoV-NL63, the harvested medium contained more than 1 × 104 genome copies/µL at every tested time point during the more than 100 days of culture. Four isolates of HCoV-NL63 were further subcultured and successfully propagated in an LLC-MK2 cell line. Our results suggest that ALI culture is useful for isolating seasonal CoVs and sustainably obtaining HCoV-OC43 and HCoV-NL63 virions. Furthermore, the LLC-MK2 cell line in combination with ALI cultures can be used for the large-scale culturing of HCoV-NL63. Further investigations are necessary to develop methods for culturing difficult-to-culture seasonal CoVs in cell lines.


Assuntos
Coronavirus/isolamento & purificação , Epitélio/virologia , Sistema Respiratório/virologia , Infecções Respiratórias/virologia , Coronavirus/genética , Genoma Viral/genética , Humanos , Japão
9.
J Clin Virol ; 133: 104662, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33137705

RESUMO

BACKGROUND: Influenza C virus causes mild respiratory diseases in humans. Previous studies suggested that the predominant hemagglutinin-esterase gene lineage circulating in children might be selected among the adult population, yet the prevalence of influenza C virus in adults has not been described. OBJECTIVES: To evaluate the frequency of influenza C virus infection in adults. STUDY DESIGN: We performed hemagglutination inhibition assays of serum samples collected at periodic occupational medical checkups from employees of a hospital. A total of 679 serum samples were collected from 57 subjects who participated in biannual medical checkups between 2011 and 2016 as part of a longitudinal series. Titers of antibodies against the C/Kanagawa and C/Sao Paulo lineage viruses were detected. RESULTS: Ten serum sample pairs from among the 57 subjects showed at least a four-fold increase in influenza C antibody titers. Samples from three subjects exhibited antibody titer increases for both the C/Kanagawa and C/Sao Paulo lineages, four subjects showed an increased titer against the C/Sao Paulo lineage, and three subjects showed an increased titer against the C/Kanagawa lineage. Half of the antibody titer increases for the C/Kanagawa lineage were detected in May 2014, while the increases for the C/Sao Paulo lineage were detected from 2011 to 2016. CONCLUSION: The 5-year influenza C virus infection rate was estimated at 17.5 %. There were antibodies that cross-reacted with the C/Sao Paulo and C/Kanagawa lineages. The results suggest that C/Sao Paulo was the main lineage in the adult population of this area, with cocirculation of the C/Kanagawa lineage.


Assuntos
Gammainfluenzavirus , Influenza Humana , Adulto , Anticorpos Antivirais , Brasil , Criança , Testes de Inibição da Hemaglutinação , Humanos , Influenza Humana/epidemiologia , Gammainfluenzavirus/genética , Japão/epidemiologia
11.
Infect Genet Evol ; 81: 104269, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32135195

RESUMO

Influenza C virus is a pathogen that causes acute respiratory illness in children and results in the hospitalization of infants. The antigenicity of the hemagglutinin esterase (HE) glycoprotein is highly stable, and it is not yet known whether antigenic changes contribute to the worldwide transmission and the occurrence of outbreaks of influenza C virus. Here, we performed antigenic analysis of 84 influenza C viruses isolated in Yamagata, Japan, during a 4-year period from 2015 to 2018 and analyzed sequence data for strains of the virus from Japan and many other parts of the world. Antigenic and phylogenetic analyses revealed that 83 strains belonged to the C/Sao Paulo lineage, and two sublineage strains, the Aichi99 sublineage and Victoria2012 sublineage, cocirculated between 2016 and 2018. Aichi99 sublineage strains exhibiting decreased reactivity with the monoclonal antibody YA3 became predominant after 2016, and these strains possessed the K190N mutation. Residue 190 is located in the 190-loop on the top side of the HE protein within a region that is known to show variation that does not impair the biological activity of the protein. The Aichi99 sublineage strains possessing the K190N mutation were detected after 2012 in Europe, Australia, the USA, and Asia as well as Japan. These observations suggest that antigenic variants with K190N mutations have circulated extensively around the world and caused outbreaks in Japan between 2016 and 2018. Our study indicated that the 190-loop is an important antigenic region, and the results suggested that changes in the 190-loop have contributed to the extensive transmission of the virus.


Assuntos
Variação Antigênica/genética , Antígenos Virais/genética , Gammainfluenzavirus/genética , Influenza Humana/virologia , Sequência de Aminoácidos , Ásia , Austrália , Surtos de Doenças , Europa (Continente) , Testes de Inibição da Hemaglutinação/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas Virais/genética , Humanos , Japão , Filogenia , Análise de Sequência de DNA/métodos , Proteínas Virais de Fusão/genética
12.
J Med Microbiol ; 68(5): 785-790, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30932805

RESUMO

PURPOSE: To clarify the spread of Mycoplasma pneumoniae infections in semi-closed settings such as schools and family homes using molecular typing methods. METHODOLOGY: We retrospectively searched for school- and family-based clusters of M. pneumoniae infections based on information regarding patients from whom M. pneumoniae strains had been isolated between 2011 and 2013 in Yamagata, Japan. The molecular typing profile, including the P1 type and the four-locus (Mpn13, 14, 15 and 16) multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) type, was obtained from our previous study. RESULTS: We identified 11 school-based clusters involving 71 patients and 16 family-based clusters involving 38 patients, including 14 duplications between these types of clusters. A total of 95M. pneumoniae strains isolated from those patients were divided into 4 genotypes: 33 strains of type 4-5-7-2, 1; 31 of type 4-5-7-3, 1; 24 of type 3-5-6-2, 2c; and 7 of type 3-5-6-2, 2a. Of the 11 school-based clusters, 6 clusters (54.5%) consisted of multiple genotypes, and the remaining 5 clusters consisted of a single genotype. Moreover, the presence of multiple genotypes was identified in three classrooms of a school. On the other hand, in 14 (87.5%) of the 16 family-based clusters, the genotypes of the M. pneumoniae strains isolated from each family member were identical. CONCLUSION: The spread of M. pneumoniae infection in schools is likely polyclonal, since M. pneumoniae strains are brought into schools from various sites, such as family homes, which are important sites of disease transmission.


Assuntos
Mycoplasma pneumoniae/classificação , Pneumonia por Mycoplasma/transmissão , Instituições Acadêmicas , Criança , DNA Bacteriano/genética , Características da Família , Genótipo , Humanos , Japão/epidemiologia , Testes de Sensibilidade Microbiana , Repetições Minissatélites , Tipagem Molecular , Mycoplasma pneumoniae/isolamento & purificação , Pneumonia por Mycoplasma/epidemiologia , Estudos Retrospectivos
13.
Vaccine ; 37(8): 1109-1117, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30683510

RESUMO

Although coxsackievirus A6 (CV-A6) is generally recognized as a causative agent of herpangina in children, CV-A6 infections globally emerged as a new and major cause of epidemic hand-foot-and-mouth-diseases (HFMDs) around 2008. To clarify the longitudinal epidemiology of CV-A6, we carried out sequence and phylogenetic analyses for the VP1 and partially for the VP4-3D regions as well as antigenic analysis using 115 CV-A6 isolates and 105 human sera in Yamagata, Japan between 2001 and 2017. Phylogenetic analysis revealed that CV-A6 isolates were clearly divided into two clusters; strains in circulation between 2001 and 2008 and those between 2010 and 2017. Neutralizing antibody titers of two rabbit antisera, which were immunized with Yamagata isolates in 2001 and 2015, respectively, against 28 Yamagata representative strains as well as the prototype Gdula strain were 1:2560-1:5120 and 1:160-1:640, respectively. The neutralizing antibody titers among residents in Yamagata against the above two strains were similar. Our analyses revealed that there were cross-antigenicities among all analyzed CV-A6 strains, although the newly emerged strains were introduced into Yamagata around 2010 and replaced the previous ones. With regard to control measures, these findings suggest that we can prevent CV-A6 infections through the development of a vaccine that effectively induces neutralizing antibodies against CV-A6, irrespective of genetic cluster.


Assuntos
Enterovirus/genética , Enterovirus/imunologia , Doença de Mão, Pé e Boca/virologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Criança , Pré-Escolar , Enterovirus/isolamento & purificação , Feminino , Genótipo , Doença de Mão, Pé e Boca/imunologia , Humanos , Japão , Masculino , Epidemiologia Molecular/métodos , Filogenia , Coelhos , Análise de Sequência de DNA
14.
Viruses ; 10(8)2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096880

RESUMO

We mapped the hemagglutinin-esterase (HE) antigenic epitopes of the influenza C virus on the three-dimensional (3D) structure of the HE glycoprotein using 246 escape mutants that were selected by a panel of nine anti-HE monoclonal antibodies (MAbs), including seven of the C/Ann Arbor/1/50 virus and two of the C/Yamagata/15/2004 virus. The frequency of variant selection in the presence of anti-HE MAbs was very low, with frequencies ranging from 10-4.62 to 10-7.58 for the C/Ann Arbor/1/50 virus and from 10-7.11 to 10-9.25 for the C/Yamagata/15/2004 virus. Sequencing of mutant HE genes revealed 25 amino acid substitutions at 16 positions in three antigenic sites: A-1, A-2, and A-3, and a newly designated Y-1 site. In the 3D structure, the A-1 site was widely located around the receptor-binding site, the A-2 site was near the receptor-destroying enzyme site, and the Y-1 site was located in the loop on the topside of HE. The hemagglutination inhibition reactions of the MAbs with influenza C viruses, circulating between 1947 and 2016, were consistent with the antigenic-site amino acid changes. We also found some amino acid variations in the antigenic site of recently circulating strains with antigenic changes, suggesting that viruses that have the potential to alter antigenicity continue to circulate in humans.


Assuntos
Variação Antigênica , Epitopos/química , Gammainfluenzavirus/genética , Hemaglutininas Virais/química , Proteínas Virais de Fusão/química , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/química , Antígenos Virais/genética , Sítios de Ligação , Epitopos/genética , Testes de Inibição da Hemaglutinação , Hemaglutininas Virais/genética , Gammainfluenzavirus/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Proteínas Virais de Fusão/genética
16.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29848582

RESUMO

Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and sometimes causes severe or fatal neurological complications. The amino acid at VP1-145 determines the virological characteristics of EV71. Viruses with glutamic acid (E) at VP1-145 (VP1-145E) are virulent in neonatal mice and transgenic mice expressing human scavenger receptor B2, whereas those with glutamine (Q) or glycine (G) are not. However, the contribution of this variation to pathogenesis in humans is not fully understood. We compared the virulence of VP1-145E and VP1-145G viruses of Isehara and C7/Osaka backgrounds in cynomolgus monkeys. VP1-145E, but not VP1-145G, viruses induced neurological symptoms. VP1-145E viruses were frequently detected in the tissues of infected monkeys. VP1-145G viruses were detected less frequently and disappeared quickly. Instead, mutants that had a G-to-E mutation at VP1-145 emerged, suggesting that VP1-145E viruses have a replication advantage in the monkeys. This is consistent with our hypothesis proposed in the accompanying paper (K. Kobayashi, Y. Sudaka, A. Takashino, A. Imura, K. Fujii, and S. Koike, J Virol 92:e00681-18, 2018, https://doi.org/10.1128/JVI.00681-18) that the VP1-145G virus is attenuated due to its adsorption by heparan sulfate. Monkeys infected with both viruses produced neutralizing antibodies before the onset of the disease. Interestingly, VP1-145E viruses were more resistant to neutralizing antibodies than VP1-145G viruses in vitro A small amount of neutralizing antibody raised in the early phase of infection may not be sufficient to block the dissemination of VP1-145E viruses. The different resistance of the VP1-145 variants to neutralizing antibodies may be one of the reasons for the difference in virulence.IMPORTANCE The contribution of VP1-145 variants in humans is not fully understood. In some studies, VP1-145G/Q viruses were isolated more frequently from severely affected patients than from mildly affected patients, suggesting that VP1-145G/Q viruses are more virulent. In the accompanying paper (K. Kobayashi, Y. Sudaka, A. Takashino, A. Imura, K. Fujii, and S. Koike, J Virol 92:e00681-18, 2018, https://doi.org/10.1128/JVI.00681-18), we showed that VP1-145E viruses are more virulent than VP1-145G viruses in human SCARB2 transgenic mice. Heparan sulfate acts as a decoy to specifically trap the VP1-145G viruses and leads to abortive infection. Here, we demonstrated that VP1-145G was attenuated in cynomolgus monkeys, suggesting that this hypothesis is also true in a nonhuman primate model. VP1-145E viruses, but not VP1-145G viruses, were highly resistant to neutralizing antibodies. We propose the difference in resistance against neutralizing antibodies as another mechanism of EV71 virulence. In summary, VP1-145 contributes to virulence determination by controlling attachment receptor usage and antibody sensitivity.


Assuntos
Substituição de Aminoácidos , Anticorpos Neutralizantes/metabolismo , Proteínas do Capsídeo/genética , Enterovirus Humano A/patogenicidade , Infecções por Enterovirus/veterinária , Macaca fascicularis/imunologia , Animais , Anticorpos Antivirais/metabolismo , Células COS , Chlorocebus aethiops , Enterovirus Humano A/genética , Enterovirus Humano A/imunologia , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Heparitina Sulfato/metabolismo , Macaca fascicularis/virologia , Masculino , Células Vero , Virulência
18.
J Med Virol ; 90(1): 34-40, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28851118

RESUMO

Although Saffold virus (SAFV) was reported as a novel human cardiovirus in 2007, no causative association between SAFV and clinical disease has been proven and the longitudinal epidemiology of SAFVs is not available. To establish the relationship between SAFVs and acute respiratory infections (ARIs) and to clarify the longitudinal epidemiology of SAFVs, 7258 nasopharyngeal specimens were collected from children with ARIs in Yamagata, Japan between 2008 and 2015. The specimens were inoculated on a microplate including six cell lines as part of routine surveillance, and molecular screening was performed for SAFVs using a reverse transcription (RT)-PCR method. Throughout the study period, 95 (1.3%) SAFV genotype 2 (SAFV2), and 28 (0.4%) SAFV3 were detected, mainly between September and November. There were two outbreaks of SAFV2 in 2009 and 2013, and one outbreak of SAFV3 in 2012 and the positive rates during these outbreaks were 12.1% (53/439), 11% (35/319), and 4.4% (20/453), respectively. Sixty-three SAFV2 and 28 SAFV3 strains were detected as a single virus from children with ARIs such as pharyngitis, herpangina, and tonsillitis. These results suggested that SAFV2 and SAFV3 are possible causative agents of ARIs among children and their infections occur mainly in the autumn season in Japan.


Assuntos
Infecções por Cardiovirus/virologia , Cardiovirus/isolamento & purificação , Infecções Respiratórias/virologia , Doença Aguda/epidemiologia , Adolescente , Cardiovirus/genética , Infecções por Cardiovirus/diagnóstico , Infecções por Cardiovirus/epidemiologia , Criança , Pré-Escolar , Surtos de Doenças/estatística & dados numéricos , Fezes/virologia , Feminino , Genoma Viral , Genótipo , Humanos , Lactente , Recém-Nascido , Japão/epidemiologia , Masculino , Nasofaringe/virologia , Filogenia , Reação em Cadeia da Polimerase , Infecções Respiratórias/epidemiologia
19.
Infect Dis (Lond) ; 50(4): 303-312, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29119851

RESUMO

BACKGROUND: All reports of increases in severe respiratory disease associated with human enterovirus D68 (EV-D68) are from hospital settings. However, there are few reports describing clinical characteristics in less severely affected populations. METHODS: We conducted a retrospective observational study from January 2010 to December 2015 in Yamagata, Japan. Using regional passive surveillance, 5794 respiratory specimens were collected from children who initially presented to an outpatient clinic with acute respiratory symptoms. The collected samples were tested for EV-D68 by reverse transcription PCR. RESULTS: EV-D68 was detected in 79 specimens mainly during the two epidemic periods in August-October 2010 and August-October 2015, when detection rates were 10.2% (31 of 304 specimens) and 16.3% (46 of 282 specimens), respectively. Among the 69 EV-D68-positive children, excluding those with viral coinfection, 39 (57%) had upper respiratory tract infections, 23 (33%) bronchiolitis or asthma attack, 5 (7%) bronchitis, 1 (1%) meningitis and 1 (1%) acute flaccid paralysis. In 23 children with wheezing, retraction was observed in 10 (43%), and six (26%) were diagnosed with asthma exacerbation. Six children required hospital admission, five (83%) because of asthma exacerbation. A history of asthma or wheezing was the most significant risk factor for the development of wheezing (odds ratio, 8.23; 95% CI, 2.65-25.50; p < .001). CONCLUSIONS: The low rate of hospitalization (9%, 6 of 69) indicates that most cases with EV-D68 infection were managed as outpatients. A history of asthma or wheezing was a potential risk factor for wheezing, resulting in hospitalization due to a severe asthma attack.


Assuntos
Asma , Enterovirus Humano D , Infecções por Enterovirus , Infecções Respiratórias , Adolescente , Instituições de Assistência Ambulatorial , Asma/epidemiologia , Asma/virologia , Proteínas do Capsídeo/genética , Criança , Pré-Escolar , Surtos de Doenças/estatística & dados numéricos , Enterovirus Humano D/classificação , Enterovirus Humano D/genética , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Feminino , Humanos , Lactente , Japão/epidemiologia , Masculino , Sons Respiratórios , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Estudos Retrospectivos
20.
Jpn J Infect Dis ; 70(6): 642-646, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29093323

RESUMO

Multiple-locus variable-number tandem-repeat analysis (MLVA) typing was performed for Mycoplasma pneumoniae strains isolated between 2004 and 2014 in Yamagata, Japan. The results were examined by considering the combination of the P1 type and prevalence of macrolide resistance-associated mutations. Four-locus (Mpn13-16) MLVA classified 347 strains into 9 MLVA types, including 3 major types: 3-5-6-2, 4-5-7-2, and 4-5-7-3. All type 3-5-6-2 strains (77 strains) were P1 type 2 variants (2a or 2c), while types 4-5-7-2 (181 strains) and 4-5-7-3 (75 strains) were P1 type 1. MLVA type 4-5-7-2 strains circulated and were dominant until 2010, accounting for 88.4% of the 121 strains isolated between 2004 and 2010. The prevalence of types 4-5-7-3 and 3-5-6-2 strains increased rapidly in 2011 and 2012, respectively, resulting in cocirculation of 3 MLVA types, including type 4-5-7-2, between 2011 and 2013. The prevalence of macrolide resistance-associated mutations in MLVA types 4-5-7-2, 4-5-7-3, and 3-5-6-2 strains was 59.7% (108/181), 25.3% (19/75), and 0% (0/77), respectively. Because the prevalence of macrolide resistance-associated mutations differed by current MLVA types in Yamagata, continued surveillance combined with molecular typing and identification of macrolide resistance-associated mutations is necessary.


Assuntos
DNA Bacteriano , Repetições Minissatélites , Tipagem de Sequências Multilocus , Mycoplasma pneumoniae/classificação , Mycoplasma pneumoniae/genética , Pneumonia por Mycoplasma/epidemiologia , Pneumonia por Mycoplasma/microbiologia , História do Século XXI , Humanos , Japão/epidemiologia , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Mycoplasma pneumoniae/efeitos dos fármacos , Mycoplasma pneumoniae/isolamento & purificação , Pneumonia por Mycoplasma/história , Prevalência , Vigilância em Saúde Pública
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA