Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 76: 101783, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37517520

RESUMO

OBJECTIVE: Accumulating evidence suggests that dysfunctional adipose tissue (AT) plays a major role in the risk of developing multiple sclerosis (MS), the most common immune-mediated and demyelinating disease of the central nervous system. However, the contribution of adipose tissue to the etiology and progression of MS is still obscure. This study aimed at deciphering the responses of AT in experimental autoimmune encephalomyelitis (EAE), the best characterized animal model of MS. RESULTS AND METHODS: We observed a significant AT loss in EAE mice at the onset of disease, with a significant infiltration of M1-like macrophages and fibrosis in the AT, resembling a cachectic phenotype. Through an integrative and multilayered approach, we identified lipocalin2 (LCN2) as the key molecule released by dysfunctional adipocytes through redox-dependent mechanism. Adipose-derived LCN2 shapes the pro-inflammatory macrophage phenotype, and the genetic deficiency of LCN2 specifically in AT reduced weight loss as well as inflammatory macrophage infiltration in spinal cord in EAE mice. Mature adipocytes downregulating LCN2 reduced lipolytic response to inflammatory stimuli (e.g. TNFα) through an ATGL-mediated mechanism. CONCLUSIONS: Overall data highlighted a role LCN2 in exacerbating inflammatory phenotype in EAE model, suggesting a pathogenic role of dysfunctional AT in MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Encefalomielite Autoimune Experimental/patologia , Lipocalina-2/genética , Macrófagos , Esclerose Múltipla/patologia , Sistema Nervoso Central
2.
Cancer Lett ; 555: 216042, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36565919

RESUMO

Ewing sarcomas are aggressive pediatric tumors of bone and soft tissues driven by in frame chromosomal translocations that yield fusion proteins guiding the oncogenic program. Promising alternative strategies to ameliorate current treatments involve inhibition of the PI3K/AKT/mTOR pathway. In this study, we identified the activating transcription factor 3 (ATF3) as an important mediator of the PI3K/AKT/mTOR pathway in Ewing sarcoma cells. ATF3 exerted its pro-tumoral activity through modulation of several chemokine-encoding genes, including CXCL8. The product of CXCL8, IL-8, acts as a pro-inflammatory chemokine critical for cancer progression and metastasis. We found that ATF3/IL-8 axis impacts macrophages populating the surrounding tumor microenvironment by promoting the M2 phenotype. Our study reveals valuable information on the PI3K/AKT/mTOR derived chemokine signaling in Ewing sarcoma cells: by promoting ATF3 and CXCL8 downregulation, inhibition of the PI3K/AKT/mTOR signaling promotes a proinflammatory response leading to upregulation of the protective anti-tumoral M1 macrophages.


Assuntos
Sarcoma de Ewing , Humanos , Fator 3 Ativador da Transcrição/genética , Interleucina-8/genética , Interleucina-8/metabolismo , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcoma de Ewing/patologia , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral
3.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35682914

RESUMO

Lipids are not only constituents of cellular membranes, but they are also key signaling mediators, thus acting as "bioactive lipids". Among the prominent roles exerted by bioactive lipids are immune regulation, inflammation, and maintenance of homeostasis. Accumulated evidence indicates the existence of a bidirectional relationship between the immune and nervous systems, and lipids can interact particularly with the aggregation and propagation of many pathogenic proteins that are well-renowned hallmarks of several neurodegenerative disorders, including Alzheimer's (AD) and Parkinson's (PD) diseases. In this review, we summarize the current knowledge about the presence and quantification of the main classes of endogenous bioactive lipids, namely glycerophospholipids/sphingolipids, classical eicosanoids, pro-resolving lipid mediators, and endocannabinoids, in AD and PD patients, as well as their most-used animal models, by means of lipidomic analyses, advocating for these lipid mediators as powerful biomarkers of pathology, diagnosis, and progression, as well as predictors of response or activity to different current therapies for these neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Animais , Eicosanoides , Humanos , Lipidômica , Doença de Parkinson/metabolismo , Esfingolipídeos/metabolismo
4.
Biomolecules ; 11(6)2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200023

RESUMO

Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. MS is characterized by infiltrations of leukocytes such as T and B lymphocytes and macrophages. Macrophages have been identified as major effectors of inflammation and demyelination in both MS and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the activation and heterogeneity of macrophages in MS has been poorly investigated. Thus, in this study, we evaluated M1 and M2 macrophages immunophenotype from EAE and control mice by analyzing over 30 surface and intracellular markers through polychromatic flow cytometry, qRT-PCR, and ELISA assay. We showed that M1 macrophages possessed a higher proinflammatory profile in EAE compared to control mice, since they expressed higher levels of activation/co-stimulatory markers (iNOS, CD40, and CD80) and cytokines/chemokines (IL-6, IL-12, CCL2, and CXCL10), whereas M2 lost their M2-like phenotype by showing a decreased expression of their signature markers CD206 and CCL22, as well as a concomitant upregulation of several M1 makers. Furthermore, immunization of M1 and M2 macrophages with MOG35-55 led to a significant hyperactivation of M1 and a concomitant shift of anti-inflammatory M2 to pro-inflammatory M1 macrophages. Overall, we provide evidence for a phenotypic alteration of M1/M2 balance during MS, which can be of crucial importance not only for a better understanding of the immunopathology of this neurodegenerative disease but also to potentially develop new macrophage-centered therapeutic strategies.


Assuntos
Polaridade Celular/fisiologia , Encefalomielite Autoimune Experimental/imunologia , Macrófagos/imunologia , Esclerose Múltipla/imunologia , Plasticidade Neuronal/fisiologia , Animais , Encefalomielite Autoimune Experimental/patologia , Feminino , Imunofenotipagem/métodos , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA