Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39495252

RESUMO

Chronic arterial hypertension disrupts the integrity of the cerebral microvasculature, doubling the risk of age-related dementia. Despite sufficient antihypertensive therapy, in still a significant proportion of individuals blood pressure lowering alone does not preserve cognitive health. Accumulating evidence highlights the role of inflammatory mechanisms in the pathogenesis of hypertension. In this review, we introduce a temporal framework to explore how early immune system activation and interactions at neurovascular-immune interfaces pave the way to cognitive impairment. The overall paradigm suggests that pro-hypertensive stimuli induce mechanical stress and systemic inflammatory responses that shift peripheral and meningeal immune effector mechanisms towards a pro-inflammatory state. Neurovascular-immune interfaces in the brain include a dysfunctional blood-brain barrier, crossed by peripheral immune cells; the perivascular space, in which macrophages respond to cerebrospinal fluid- and blood-derived immune regulators; and the meningeal immune reservoir, particularly T cells. Immune responses at these interfaces bridge peripheral and neurovascular unit inflammation, directly contributing to impaired brain perfusion, clearance of toxic metabolites and synaptic function. We propose that deep immunophenotyping in biofluids together with advanced neuroimaging could aid in the translational determination of sequential immune and brain endotypes specific to arterial hypertension. This could close knowledge gaps on how and when immune system activation transits into neurovascular dysfunction and cognitive impairment. In the future, targeting specific immune mechanisms could prevent and halt hypertension disease progression before clinical symptoms arise, addressing the need for new interventions against one of the leading threats to cognitive health.

2.
Inn Med (Heidelb) ; 2024 Oct 10.
Artigo em Alemão | MEDLINE | ID: mdl-39387861

RESUMO

Cardiovascular risk factors (high blood pressure, smoking, overweight, type 2 diabetes, dyslipidemia, physical inactivity) substantially rise with increasing age, particularly after middle age, whereby women are affected to a much greater extent. In the population of Saxony-Anhalt the prevalence of cardiovascular risk factors is clearly increased and the population structure in Saxony-Anhalt is particularly characterized by a high average age as well as high morbidity and mortality rates due to cardiovascular diseases. Saxony-Anhalt therefore provides a model character for the demographic development in Europe. This review article discusses strategies for the implementation of target group-specific cardiovascular preventive strategies in the Federal State of Saxony-Anhalt with special consideration of age and sex. When preventive medicine facilities are established and innovative treatment possibilities for patients with cardiovascular risks are created, prevention should also become available in rural areas.

3.
Brain Commun ; 6(5): fcae321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355004

RESUMO

Age-related differences in cortical microstructure are used to understand the neuronal mechanisms that underlie human brain ageing. The cerebral vasculature contributes to cortical ageing, but its precise interaction with cortical microstructure is poorly understood. In a cross-sectional study, we combine venous imaging with vessel distance mapping to investigate the interaction between venous distances and age-related differences in the microstructural architecture of the primary somatosensory cortex, the primary motor cortex and additional areas in the frontal cortex as non-sensorimotor control regions. We scanned 18 younger adults and 17 older adults using 7 Tesla MRI to measure age-related changes in longitudinal relaxation time (T1) and quantitative susceptibility mapping (QSM) values at 0.5 mm isotropic resolution. We modelled different cortical depths using an equi-volume approach and assessed the distance of each voxel to its nearest vein using vessel distance mapping. Our data reveal a dependence of cortical quantitative T1 values and positive QSM values on venous distance. In addition, there is an interaction between venous distance and age on quantitative T1 values, driven by lower quantitative T1 values in older compared to younger adults in voxels that are closer to a vein. Together, our data show that the local venous architecture explains a significant amount of variance in standard measures of cortical microstructure and should be considered in neurobiological models of human brain organisation and cortical ageing.

4.
Alzheimers Res Ther ; 16(1): 196, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232823

RESUMO

BACKGROUND: While several studies in cerebral amyloid angiopathy (CAA) focus on cognitive function, data on neuropsychiatric symptoms (NPS) and lifelong mental activities in these patients are scarce. Since NPS are associated with functional impairment, faster cognitive decline and faster progression to death, replication studies in more diverse settings and samples are warranted. METHODS: We prospectively recruited n = 69 CAA patients and n = 18 cognitively normal controls (NC). The number and severity of NPS were assessed using the Alzheimer's Disease (AD) Assessment Scale's (ADAS) noncognitive subscale. We applied different regression models exploring associations between NPS number or severity and group status (CAA vs. NC), CAA severity assessed with magnetic resonance imaging (MRI) or cognitive function (Mini-Mental State Examination (MMSE), ADAS cognitive subscale), adjusting for age, sex, years of education, arterial hypertension, AD pathology, and apolipoprotein E status. Mediation analyses were performed to test indirect effects of lifelong mental activities on CAA severity and NPS. RESULTS: Patients with CAA had 4.86 times (95% CI 2.20-10.73) more NPS and 3.56 units (95% CI 1.94-5.19) higher expected NPS severity than NC. Higher total CAA severity on MRI predicted 1.14 times (95% CI 1.01.-1.27) more NPS and 0.57 units (95% CI 0.19-0.95) higher expected NPS severity. More severe white matter hyperintensities were associated with 1.21 times more NPS (95% CI 1.05-1.39) and 0.63 units (95% CI 0.19-1.08) more severe NPS. NPS number (MMSE mean difference - 1.15, 95% CI -1.67 to -0.63; ADAS cognitive mean difference 1.91, 95% CI 1.26-2.56) and severity (MMSE - 0.55, 95% CI -0.80 to -0.30; ADAS cognitive mean difference 0.89, 95% CI 0.57-1.21) predicted lower cognitive function. Greater lifelong mental activities partially mediated the relationship between CAA severity and NPS (indirect effect 0.05, 95% CI 0.0007-0.13), and greater lifelong mental activities led to less pronounced CAA severity and thus to less NPS (indirect effect - 0.08, 95% CI -0.22 to -0.002). DISCUSSION: This study suggests that NPS are common in CAA, and that this relationship may be driven by CAA severity. Furthermore, NPS seem to be tied to lower cognitive function. However, lifelong mental activities might mitigate the impact of NPS in CAA.


Assuntos
Angiopatia Amiloide Cerebral , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Humanos , Feminino , Masculino , Idoso , Estudos Transversais , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Angiopatia Amiloide Cerebral/psicologia , Pessoa de Meia-Idade , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Estudos Prospectivos , Índice de Gravidade de Doença , Idoso de 80 Anos ou mais
6.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826408

RESUMO

Magnetic resonance angiography (MRA) performed at ultra-high magnetic field provides a unique opportunity to study the arteries of the living human brain at the mesoscopic level. From this, we can gain new insights into the brain's blood supply and vascular disease affecting small vessels. However, for quantitative characterization and precise representation of human angioarchitecture to, for example, inform blood-flow simulations, detailed segmentations of the smallest vessels are required. Given the success of deep learning-based methods in many segmentation tasks, we here explore their application to high-resolution MRA data, and address the difficulty of obtaining large data sets of correctly and comprehensively labelled data. We introduce VesselBoost, a vessel segmentation package, which utilizes deep learning and imperfect training labels for accurate vasculature segmentation. Combined with an innovative data augmentation technique, which leverages the resemblance of vascular structures, VesselBoost enables detailed vascular segmentations.

7.
J Cereb Blood Flow Metab ; 44(11): 1362-1377, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38863151

RESUMO

Enlarged perivascular spaces (EPVS) are common in cerebral small vessel disease (CSVD) and have been identified as a marker of dysfunctional brain clearance. However, it remains unknown if the enlargement occurs predominantly around arteries or veins. We combined in vivo ultra-high-resolution MRI and histopathology to investigate the spatial relationship of veins and arteries with EPVS within the basal ganglia (BG). Furthermore, we assessed the relationship between the EPVS and measures of blood-flow (blood-flow velocity, pulsatility index) in the small arteries of the BG. Twenty-four healthy controls, twelve non-CAA CSVD patients, and five probable CAA patients underwent a 3 tesla [T] and 7T MRI-scan, and EPVS, arteries, and veins within the BG were manually segmented. Furthermore, the scans were co-registered. Six autopsy-cases were also assessed. In the BG, EPVS were significantly closer to and overlapped more frequently with arteries than with veins. Histological analysis showed a higher proportion of BG EPVS surrounding arteries than veins. Finally, the pulsatility index of BG arteries correlated with EPVS volume. Our results are in line with previous works and establish a pathophysiological relationship between arteries and EPVS, contributing to elucidating perivascular clearance routes in the human brain.


Assuntos
Gânglios da Base , Doenças de Pequenos Vasos Cerebrais , Sistema Glinfático , Imageamento por Ressonância Magnética , Humanos , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/irrigação sanguínea , Gânglios da Base/patologia , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/patologia , Sistema Glinfático/fisiopatologia , Masculino , Feminino , Idoso , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Pessoa de Meia-Idade , Artérias Cerebrais/diagnóstico por imagem , Artérias Cerebrais/patologia , Circulação Cerebrovascular/fisiologia , Idoso de 80 Anos ou mais , Velocidade do Fluxo Sanguíneo , Veias Cerebrais/diagnóstico por imagem , Veias Cerebrais/patologia
8.
Acta Neuropathol Commun ; 11(1): 204, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115109

RESUMO

Vascular risk factors such as chronic hypertension are well-established major modifiable factors for the development of cerebral small vessel disease (cSVD). In the present study, our focus was the investigation of cSVD-related phenotypic changes in microglia in human disease and in the spontaneously hypertensive stroke-prone rat (SHRSP) model of cSVD. Our examination of cortical microglia in human post-mortem cSVD cortical tissue revealed distinct morphological microglial features specific to cSVD. We identified enlarged somata, an increase in the territory occupied by thickened microglial processes, and an expansion in the number of vascular-associated microglia. In parallel, we characterized microglia in a rodent model of hypertensive cSVD along different durations of arterial hypertension, i.e., early chronic and late chronic hypertension. Microglial somata were already enlarged in early hypertension. In contrast, at late-stage chronic hypertension, they further exhibited elongated branches, thickened processes, and a reduced ramification index, mirroring the findings in human cSVD. An unbiased multidimensional flow cytometric analysis revealed phenotypic heterogeneity among microglia cells within the hippocampus and cortex. At early-stage hypertension, hippocampal microglia exhibited upregulated CD11b/c, P2Y12R, CD200R, and CD86 surface expression. Detailed analysis of cell subpopulations revealed a unique microglial subset expressing CD11b/c, CD163, and CD86 exclusively in early hypertension. Notably, even at early-stage hypertension, microglia displayed a higher association with cerebral blood vessels. We identified several profound clusters of microglia expressing distinct marker profiles at late chronic hypertensive states. In summary, our findings demonstrate a higher vulnerability of the hippocampus, stage-specific microglial signatures based on morphological features, and cell surface protein expression in response to chronic arterial hypertension. These results indicate the diversity within microglia sub-populations and implicate the subtle involvement of microglia in cSVD pathogenesis.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Hipertensão , Ratos , Humanos , Camundongos , Animais , Microglia/metabolismo , Hipertensão/complicações , Hipertensão/patologia , Ratos Endogâmicos SHR , Doenças de Pequenos Vasos Cerebrais/patologia , Fenótipo
9.
Brain Commun ; 5(3): fcad135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180994

RESUMO

This scientific commentary refers to 'Functional connectivity in older adults-the effect of cerebral small vessel disease' by Drenth et al. (https://doi.org/10.1093/braincomms/fcad126).

10.
Front Neurol ; 14: 1112312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006483

RESUMO

Background: Cerebral microbleeds (MBs) are a hallmark of cerebral small vessel disease (CSVD) and can be found on T2*-weighted sequences on MRI. Quantitative susceptibility mapping (QSM) is a postprocessing method that also enables MBs identification and furthermore allows to differentiate them from calcifications. Aims: We explored the implications of using QSM at submillimeter resolution for MBs detection in CSVD. Methods: Both 3 and 7 Tesla (T) MRI were performed in elderly participants without MBs and patients with CSVD. MBs were quantified on T2*-weighted imaging and QSM. Differences in the number of MBs were assessed, and subjects were classified in CSVD subgroups or controls both on 3T T2*-weighted imaging and 7T QSM. Results: 48 participants [mean age (SD) 70.9 (8.8) years, 48% females] were included: 31 were healthy controls, 6 probable cerebral amyloid angiopathy (CAA), 9 mixed CSVD, and 2 were hypertensive arteriopathy [HA] patients. After accounting for the higher number of MBs detected at 7T QSM (Median = Mdn; Mdn7T-QSM = 2.5; Mdn3T-T2 = 0; z = 4.90; p < 0.001) and false positive MBs (6.1% calcifications), most healthy controls (80.6%) demonstrated at least one MB and more MBs were discovered in the CSVD group. Conclusions: Our observations suggest that QSM at submillimeter resolution improves the detection of MBs in the elderly human brain. A higher prevalence of MBs than so far known in healthy elderly was revealed.

11.
Neuroimage ; 274: 120094, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028734

RESUMO

The association between cerebral blood supply and cognition has been widely discussed in the recent literature. One focus of this discussion has been the anatomical variability of the circle of Willis, with morphological differences being present in more than half of the general population. While previous studies have attempted to classify these differences and explore their contribution to hippocampal blood supply and cognition, results have been controversial. To disentangle these previously inconsistent findings, we introduce Vessel Distance Mapping (VDM) as a novel methodology for evaluating blood supply, which allows for obtaining vessel pattern metrics with respect to the surrounding structures, extending the previously established binary classification into a continuous spectrum. To accomplish this, we manually segmented hippocampal vessels obtained from high-resolution 7T time-of-flight MR angiographic imaging in older adults with and without cerebral small vessel disease, generating vessel distance maps by computing the distances of each voxel to its nearest vessel. Greater values of VDM-metrics, which reflected higher vessel distances, were associated with poorer cognitive outcomes in subjects affected by vascular pathology, while this relation was not observed in healthy controls. Therefore, a mixed contribution of vessel pattern and vessel density is proposed to confer cognitive resilience, consistent with previous research findings. In conclusion, VDM provides a novel platform, based on a statistically robust and quantitative method of vascular mapping, for addressing a variety of clinical research questions.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Imageamento por Ressonância Magnética , Humanos , Idoso , Imageamento por Ressonância Magnética/métodos , Cognição , Doenças de Pequenos Vasos Cerebrais/patologia , Hipocampo/patologia
12.
Cells ; 12(6)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36980297

RESUMO

Brain vascular health appears to be critical for preventing the development of amyotrophic lateral sclerosis (ALS) and slowing its progression. ALS patients often demonstrate cardiovascular risk factors and commonly suffer from cerebrovascular disease, with evidence of pathological alterations in their small cerebral blood vessels. Impaired vascular brain health has detrimental effects on motor neurons: vascular endothelial growth factor levels are lowered in ALS, which can compromise endothelial cell formation and the integrity of the blood-brain barrier. Increased turnover of neurovascular unit cells precedes their senescence, which, together with pericyte alterations, further fosters the failure of toxic metabolite removal. We here provide a comprehensive overview of the pathogenesis of impaired brain vascular health in ALS and how novel magnetic resonance imaging techniques can aid its detection. In particular, we discuss vascular patterns of blood supply to the motor cortex with the number of branches from the anterior and middle cerebral arteries acting as a novel marker of resistance and resilience against downstream effects of vascular risk and events in ALS. We outline how certain interventions adapted to patient needs and capabilities have the potential to mechanistically target the brain microvasculature towards favorable motor cortex blood supply patterns. Through this strategy, we aim to guide novel approaches to ALS management and a better understanding of ALS pathophysiology.


Assuntos
Esclerose Lateral Amiotrófica , Córtex Motor , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Córtex Motor/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neurônios Motores/patologia , Barreira Hematoencefálica/patologia
13.
Int J Comput Assist Radiol Surg ; 18(5): 837-844, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36662415

RESUMO

PURPOSE: 7T time-of-flight (TOF) MRI provides high resolution for the evaluation of cerebrovascular vessels and pathologies. In combination with 4D flow fields acquired with phase-contrast (PC) MRI, hemodynamic information can be extracted to enhance the analysis by providing direct measurements in the larger arteries or patient-specific boundary conditions. Hence, a registration between both modalities is required. METHODS: To combine TOF and PC-MRI data, we developed a hybrid registration approach. Vessels and their centerlines are segmented from the TOF data. The centerline is fit to the intensity ridges of the lower resolved PC-MRI data, which provides temporal information. We used a metric that utilizes a scaled sum of weighted intensities and gradients on the normal plane. The registration is then guided by decoupled local affine transformations. It is applied hierarchically following the branching order of the vessel tree. RESULTS: A landmark validation over Monte Carlo simulations yielded an average mean squared error of 184.73 mm and an average Hausdorff distance of 15.20 mm. The hierarchical traversal that transforms child vessels with their parents registers even small vessels not detectable in the PC-MRI. CONCLUSION: The presented work combines high-resolution tomographic information from 7T TOF-MRI and measured flow data from 4D 7T PC-MRI scan for the arteries of the brain. This enables usage of patient-specific flow parameters for realistic simulations, thus supporting research in areas such as cerebral small vessel disease. Automatization and free deformations can help address the limiting error measures in the future.


Assuntos
Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Criança , Humanos , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Artérias
15.
J Imaging ; 8(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36286353

RESUMO

Blood vessels of the brain provide the human brain with the required nutrients and oxygen. As a vulnerable part of the cerebral blood supply, pathology of small vessels can cause serious problems such as Cerebral Small Vessel Diseases (CSVD). It has also been shown that CSVD is related to neurodegeneration, such as Alzheimer's disease. With the advancement of 7 Tesla MRI systems, higher spatial image resolution can be achieved, enabling the depiction of very small vessels in the brain. Non-Deep Learning-based approaches for vessel segmentation, e.g., Frangi's vessel enhancement with subsequent thresholding, are capable of segmenting medium to large vessels but often fail to segment small vessels. The sensitivity of these methods to small vessels can be increased by extensive parameter tuning or by manual corrections, albeit making them time-consuming, laborious, and not feasible for larger datasets. This paper proposes a deep learning architecture to automatically segment small vessels in 7 Tesla 3D Time-of-Flight (ToF) Magnetic Resonance Angiography (MRA) data. The algorithm was trained and evaluated on a small imperfect semi-automatically segmented dataset of only 11 subjects; using six for training, two for validation, and three for testing. The deep learning model based on U-Net Multi-Scale Supervision was trained using the training subset and was made equivariant to elastic deformations in a self-supervised manner using deformation-aware learning to improve the generalisation performance. The proposed technique was evaluated quantitatively and qualitatively against the test set and achieved a Dice score of 80.44 ± 0.83. Furthermore, the result of the proposed method was compared against a selected manually segmented region (62.07 resultant Dice) and has shown a considerable improvement (18.98%) with deformation-aware learning.

16.
Elife ; 112022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486089

RESUMO

The pial arterial vasculature of the human brain is the only blood supply to the neocortex, but quantitative data on the morphology and topology of these mesoscopic arteries (diameter 50-300 µm) remains scarce. Because it is commonly assumed that blood flow velocities in these vessels are prohibitively slow, non-invasive time-of-flight magnetic resonance angiography (TOF-MRA)-which is well suited to high 3D imaging resolutions-has not been applied to imaging the pial arteries. Here, we provide a theoretical framework that outlines how TOF-MRA can visualize small pial arteries in vivo, by employing extremely small voxels at the size of individual vessels. We then provide evidence for this theory by imaging the pial arteries at 140 µm isotropic resolution using a 7 Tesla (T) magnetic resonance imaging (MRI) scanner and prospective motion correction, and show that pial arteries one voxel width in diameter can be detected. We conclude that imaging pial arteries is not limited by slow blood flow, but instead by achievable image resolution. This study represents the first targeted, comprehensive account of imaging pial arteries in vivo in the human brain. This ultra-high-resolution angiography will enable the characterization of pial vascular anatomy across the brain to investigate patterns of blood supply and relationships between vascular and functional architecture.


Assuntos
Encéfalo , Angiografia por Ressonância Magnética , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos
17.
Magn Reson Med ; 87(2): 646-657, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34463376

RESUMO

PURPOSE: Quantitative assessment of prospective motion correction (PMC) capability at 7T MRI for compliant healthy subjects to improve high-resolution images in the absence of intentional motion. METHODS: Twenty-one healthy subjects were imaged at 7 T. They were asked not to move, to consider only unintentional motion. An in-bore optical tracking system was used to monitor head motion and consequently update the imaging volume. For all subjects, high-resolution T1 (3D-MPRAGE), T2 (2D turbo spin echo), proton density (2D turbo spin echo), and T2∗ (2D gradient echo) weighted images were acquired with and without PMC. The images were evaluated through subjective and objective analysis. RESULTS: Subjective evaluation overall has shown a statistically significant improvement (5.5%) in terms of image quality with PMC ON. In a separate evaluation of every contrast, three of the four contrasts (T1 , T2 , and proton density) have shown a statistically significant improvement (9.62%, 9.85%, and 9.26%), whereas the fourth one ( T2∗ ) has shown improvement, although not statistically significant. In the evaluation with objective metrics, average edge strength has shown an overall improvement of 6% with PMC ON, which was statistically significant; and gradient entropy has shown an overall improvement of 2%, which did not reach statistical significance. CONCLUSION: Based on subjective assessment, PMC improved image quality in high-resolution images of healthy compliant subjects in the absence of intentional motion for all contrasts except T2∗ , in which no significant differences were observed. Quantitative metrics showed an overall trend for an improvement with PMC, but not all differences were significant.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Movimento (Física) , Estudos Prospectivos
18.
Commun Biol ; 4(1): 1069, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521987

RESUMO

Primary visual cortex (V1) in humans is known to represent both veridically perceived external input and internally-generated contents underlying imagery and mental rotation. However, it is unknown how the brain keeps these contents separate thus avoiding a mixture of the perceived and the imagined which could lead to potentially detrimental consequences. Inspired by neuroanatomical studies showing that feedforward and feedback connections in V1 terminate in different cortical layers, we hypothesized that this anatomical compartmentalization underlies functional segregation of external and internally-generated visual contents, respectively. We used high-resolution layer-specific fMRI to test this hypothesis in a mental rotation task. We found that rotated contents were predominant at outer cortical depth bins (i.e. superficial and deep). At the same time perceived contents were represented stronger at the middle cortical bin. These results identify how through cortical depth compartmentalization V1 functionally segregates rather than confuses external from internally-generated visual contents. These results indicate that feedforward and feedback manifest in distinct subdivisions of the early visual cortex, thereby reflecting a general strategy for implementing multiple cognitive functions within a single brain region.


Assuntos
Córtex Visual Primário/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Adulto Jovem
19.
Brain Commun ; 3(3): fcab127, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34222874

RESUMO

The hippocampus within the medial temporal lobe is highly vulnerable to age-related pathology such as vascular disease. We examined hippocampal vascularization patterns by harnessing the ultra-high resolution of 7 Tesla magnetic resonance angiography. Dual-supply hemispheres with a contribution of the anterior choroidal artery to hippocampal blood supply were distinguished from single-supply ones with a sole dependence on the posterior cerebral artery. A recent study indicated that a dual vascular supply is related to preserved cognition and structural hippocampal integrity in old age and vascular disease. Here, we examined the regional specificity of these structural benefits at the level of medial temporal lobe sub-regions and hemispheres. In a cross-sectional study with an older cohort of 17 patients with cerebral small vessel disease (70.7 ± 9.0 years, 35.5% female) and 27 controls (71.1 ± 8.2 years, 44.4% female), we demonstrate that differences in grey matter volumes related to the hippocampal vascularization pattern were specifically observed in the anterior hippocampus and entorhinal cortex. These regions were especially bigger in dual-supply hemispheres, but also seemed to benefit from a contralateral dual supply. We further show that total grey matter volumes were greater in people with at least one dual-supply hemisphere, indicating that the hippocampal vascularization pattern has more far-reaching structural implications beyond the medial temporal lobe. A mediation analysis identified total grey matter as a mediator of differences in global cognition. However, our analyses on multiple neuroimaging markers for cerebral small vessel disease did not reveal any evidence that an augmented hippocampal vascularization conveys resistance nor resilience against vascular pathology. We propose that an augmented hippocampal vascularization might contribute to maintaining structural integrity in the brain and preserving cognition despite age-related degeneration. As such, the binary hippocampal vascularization pattern could have major implications for brain structure and function in ageing and dementia independent of vascular pathology, while presenting a simple framework with potential applicability to the clinical setting.

20.
Sci Data ; 8(1): 138, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035308

RESUMO

Here, we present an extension to our previously published structural ultrahigh resolution T1-weighted magnetic resonance imaging (MRI) dataset with an isotropic resolution of 250 µm, consisting of multiple additional ultrahigh resolution contrasts. Included are up to 150 µm Time-of-Flight angiography, an updated 250 µm structural T1-weighted reconstruction, 330 µm quantitative susceptibility mapping, up to 450 µm structural T2-weighted imaging, 700 µm T1-weighted back-to-back scans, 800 µm diffusion tensor imaging, one hour continuous resting-state functional MRI with an isotropic spatial resolution of 1.8 mm as well as more than 120 other structural T1-weighted volumes together with multiple corresponding proton density weighted acquisitions collected over ten years. All data are from the same participant and were acquired on the same 7 T scanner. The repository contains the unprocessed data as well as (pre-)processing results. The data were acquired in multiple studies with individual goals. This is a unique and comprehensive collection comprising a "human phantom" dataset. Therefore, we compiled, processed, and structured the data, making them publicly available for further investigation.


Assuntos
Mapeamento Encefálico , Imagem de Tensor de Difusão , Imagens de Fantasmas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA