Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Cornea ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39383473

RESUMO

PURPOSE: The human cornea is essential for vision, providing structural integrity and refractive power to the eye. Recent advancements have deepened our understanding of the corneal molecular composition, yet the role of intrinsically disordered proteins within the cornea is unexplored. METHODS: We analyzed 3,250 corneal proteins identified by Dyrlund et al, focusing on the epithelium, stroma, and endothelium layers. We performed a bioinformatics analysis to characterize the amino acid composition, the propensity for intrinsic protein disorder, and the distribution of protein types in 3 corneal layer proteome. RESULTS: Our study demonstrates that each corneal layer exhibited unique patterns in amino acid composition related to protein disorder. Order-promoting amino acids were generally depleted except for leucine, whereas disorder-promoting amino acids like arginine and glutamic acid were enriched across all layers. Significant variations were observed in the levels of intrinsic disorder among the different corneal layers, with substantial proportions of highly disordered proteins present in each. Analysis of protein class type in each layers revealed that no significant differences were detected in the distribution of protein classifications across the layers, suggesting a consistent population of the protein types across all corneal layers. CONCLUSIONS: Our findings reveal a sophisticated landscape of protein structures where intrinsic disorder varies across layers, suggesting an adaptation of the corneal proteome to the unique physiological demands of each layer. These structural variations may reflect the intricate requirements for corneal transparency, biomechanical stability, and environmental responsiveness.

2.
Invest Ophthalmol Vis Sci ; 64(11): 14, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37561450

RESUMO

Purpose: We aimed to characterize the proteome of human tears and assess for the presence of intrinsically disordered proteins (IDPs). IDPs, despite lacking a rigid three-dimensional structure, maintain biological functionality and could shed light on the molecular interactions within tears. Methods: We analyzed a dataset of 1475 proteins identified in the tear film of three healthy subjects. We employed several computational tools, including the Compositional Profiler, Rapid Intrinsic Disorder Analysis Online, Search Tool for the Retrieval of Interacting Genes, and Database of Disordered Protein Predictors to evaluate the intrinsic disorder, protein interactions, and functional characterization of the disordered regions within this proteome. Results: Our analysis showed a notable inclination toward intrinsic disorder. Two out of 10 order-promoting residues and five out of 10 disorder-promoting residues were found enriched. Using the Predictor of Natural Disordered Regions (PONDR) VSL2 output, 95% of these proteins were classified as highly or moderately disordered. We revealed an extensive protein-protein interaction network with significant interaction enrichment. The most disordered proteins exhibited higher disorder binding sites and diverse posttranslational modifications compared to the most ordered ones. Conclusions: To the best of our knowledge, our study is the first comprehensive analysis of intrinsic disorder in the human tear film proteome, and it revealed an abundance of IDPs and their role in protein function and interaction networks. These findings suggest that variations in the intrinsic disorder of a tear film could be impacted by systemic and ocular conditions, offering promising avenues for disease biomarker identification and drug target development. Further research is needed to understand the implications of these findings in human health and disease.


Assuntos
Proteoma , Humanos , Proteoma/metabolismo , Sítios de Ligação , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA