Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurol ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676723

RESUMO

BACKGROUND: Acute basilar artery occlusion is a life-threatening medical emergency with a highly elevated mortality rate when left untreated. Little is known about symptoms and clinical progression of chronic occlusions. The aim of this study was to systematically analyze the clinical presentation of patients with chronic basilar artery occlusion (CBAO). METHODS: Monocentric retrospective analysis of adult patients with CBAO was treated between 2015 and 2023 in the Department of Neurology, Klinikum Kassel. Inclusion criteria were basilar artery occlusion without brainstem infarction as well as patients with a basilar artery occlusion in whom revascularization could not be achieved and a follow-up period of at least 3 months. RESULTS: A total of 15 patients were found. In five patients basilar artery occlusion was diagnosed as an incidental finding, four patients had neurological symptoms but no proven brainstem infarction (3 × transient ischemic attack, 1 × isolated posterior artery infarct) and six patients presented with acute basilar artery occlusion and a follow-up > 3 months. The most common site of occlusion was midbasilar (80%, n = 12), isolated (n = 7) or in combination with other locations (n = 5). In all cases collateralization could be demonstrated by the posterior communicating arteries. The most common vascular risk factors (VRF) were hypertension (100%) and hypercholesterolemia (67%). CONCLUSIONS: Patients with CBAO may present with only mild symptoms or may even be asymptomatic. This condition may be survived for a long time. The high percentage of vascular risk factors and further cerebral vessel occlusions suggest arteriosclerosis as the major causing factor of CBAO.

2.
Front Pharmacol ; 12: 688950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093211

RESUMO

The tricyclic antidepressant amitriptyline is frequently prescribed but its use is limited by its narrow therapeutic range and large variation in pharmacokinetics. Apart from interindividual differences in the activity of the metabolising enzymes cytochrome P450 (CYP) 2D6 and 2C19, genetic polymorphism of the hepatic influx transporter organic cation transporter 1 (OCT1) could be contributing to interindividual variation in pharmacokinetics. Here, the impact of OCT1 genetic variation on the pharmacokinetics of amitriptyline and its active metabolite nortriptyline was studied in vitro as well as in healthy volunteers and in depressive disorder patients. Amitriptyline and nortriptyline were found to inhibit OCT1 in recombinant cells with IC50 values of 28.6 and 40.4 µM. Thirty other antidepressant and neuroleptic drugs were also found to be moderate to strong OCT1 inhibitors with IC50 values in the micromolar range. However, in 35 healthy volunteers, preselected for their OCT1 genotypes, who received a single dose of 25 mg amitriptyline, no significant effects on amitriptyline and nortriptyline pharmacokinetics could be attributed to OCT1 genetic polymorphism. In contrast, the strong impact of the CYP2D6 genotype on amitriptyline and nortriptyline pharmacokinetics and of the CYP2C19 genotype on nortriptyline was confirmed. In addition, acylcarnitine derivatives were measured as endogenous biomarkers for OCT1 activity. The mean plasma concentrations of isobutyrylcarnitine and 2-methylbutyrylcarnitine were higher in participants with two active OCT1 alleles compared to those with zero OCT1 activity, further supporting their role as endogenous in vivo biomarkers for OCT1 activity. A moderate reduction in plasma isobutyrylcarnitine concentrations occurred at the time points at which amitriptyline plasma concentrations were the highest. In a second, independent study sample of 50 patients who underwent amitriptyline therapy of 75 mg twice daily, a significant trend of increasing amitriptyline plasma concentrations with decreasing OCT1 activity was observed (p = 0.018), while nortriptyline plasma concentrations were unaffected by the OCT1 genotype. Altogether, this comprehensive study showed that OCT1 activity does not appear to be a major factor determining amitriptyline and nortriptyline pharmacokinetics and that hepatic uptake occurs mainly through other mechanisms.

3.
Front Pharmacol ; 12: 661480, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025422

RESUMO

Organic cation transporter 1 (OCT1, SLC22A1) is localized in the sinusoidal membrane of human hepatocytes and mediates hepatic uptake of weakly basic or cationic drugs and endogenous compounds. Common amino acid substitutions in OCT1 were associated with altered pharmacokinetics and efficacy of drugs like sumatriptan and fenoterol. Recently, the common splice variant rs35854239 has also been suggested to affect OCT1 function. rs35854239 represents an 8 bp duplication of the donor splice site at the exon 7-intron 7 junction. Here we quantified the extent to which this duplication affects OCT1 splicing and, as a consequence, the expression and the function of OCT1. We used pyrosequencing and deep RNA-sequencing to quantify the effect of rs35854239 on splicing after minigene expression of this variant in HepG2 and Huh7 cells and directly in human liver samples. Further, we analyzed the effects of rs35854239 on OCT1 mRNA expression in total, localization and activity of the resulting OCT1 protein, and on the pharmacokinetics of sumatriptan and fenoterol. The 8 bp duplication caused alternative splicing in 38% (deep RNA-sequencing) to 52% (pyrosequencing) of the minigene transcripts when analyzed in HepG2 and Huh7 cells. The alternatively spliced transcript encodes for a truncated protein that after transient transfection in HEK293 cells was not localized in the plasma membrane and was not able to transport the OCT1 model substrate ASP+. In human liver, however, the alternatively spliced OCT1 transcript was detectable only at very low levels (0.3% in heterozygous and 0.6% in homozygous carriers of the 8 bp duplication, deep RNA-sequencing). The 8 bp duplication was associated with a significant reduction of OCT1 expression in the human liver, but explained only 9% of the general variability in OCT1 expression and was not associated with significant changes in the pharmacokinetics of sumatriptan and fenoterol. Therefore, the rs35854239 variant only partially changes splicing, causing moderate changes in OCT1 expression and may be of only limited therapeutic relevance.

4.
Front Pharmacol ; 12: 674559, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040533

RESUMO

Genome-wide association studies have identified an association between isobutyrylcarnitine (IBC) and organic cation transporter 1 (OCT1) genotypes. Higher IBC blood concentrations in humans with active OCT1 genotypes and experimental studies with mouse OCT1 suggested an OCT1-mediated efflux of IBC. In this study, we wanted to confirm the suggested use of IBC as an endogenous biomarker of OCT1 activity and contribute to a better understanding of the mechanisms behind the association between blood concentrations of carnitine derivatives and OCT1 genotype. Blood and urine IBC concentrations were quantified in healthy volunteers regarding intra- and interindividual variation and correlation with OCT1 genotype and with pharmacokinetics of known OCT1 substrates. Furthermore, IBC formation and transport were studied in cell lines overexpressing OCT1 and its naturally occurring variants. Carriers of high-activity OCT1 genotypes had about 3-fold higher IBC blood concentrations and 2-fold higher amounts of IBC excreted in urine compared to deficient OCT1. This was likely due to OCT1 function, as indicated by the fact that IBC correlated with the pharmacokinetics of known OCT1 substrates, like fenoterol, and blood IBC concentrations declined with a 1 h time delay following peak concentrations of the OCT1 substrate sumatriptan. Thus, IBC is a suitable endogenous biomarker reflecting both, human OCT1 (hOCT1) genotype and activity. While murine OCT1 (mOCT1) was an efflux transporter of IBC, hOCT1 exhibited no IBC efflux activity. Inhibition experiments confirmed this data showing that IBC and other acylcarnitines, like butyrylcarnitine, 2-methylbutyrylcarnitine, and hexanoylcarnitine, showed reduced efflux upon inhibition of mOCT1 but not of hOCT1. IBC and other carnitine derivatives are endogenous biomarkers of hOCT1 genotype and phenotype. However, in contrast to mice, the mechanisms underlying the IBC-OCT1 correlation in humans is apparently not directly the OCT1-mediated efflux of IBC. A plausible explanation could be that hOCT1 mediates cellular concentrations of specific regulators or co-substrates in lipid and energy metabolism, which is supported by our in vitro finding that at baseline intracellular IBC concentration is about 6-fold lower alone by OCT1 overexpression.

5.
Front Genet ; 11: 944, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973880

RESUMO

Human CYP3A enzymes (including CYP3A4 and CYP4A5) metabolize about 40% of all drugs and numerous other environmental and endogenous substances. CYP3A activity is highly variable within and between humans. As a consequence, therapy with standard doses often results in too low or too high blood and tissue concentrations resulting in therapeutic failure or dose-related adverse reactions. It is an unanswered question how much of the big interindividual variation in CYP3A activity is caused by genetic or by environmental factors. This question can be answered by the twin study approach. Using midazolam as CYP3A probe drug, we studied 43 monozygotic and 14 dizygotic twins and measured midazolam and its metabolite 1-OH-midazolam. In addition, endogenous biomarkers of CYP3A activity, 4ß-OH-cholesterol and 6ß-OH-cortisol, were analyzed. Additive genetic effects accounted for only 15% of the variation in midazolam AUC, whereas 48% was attributed to common environmental factors. In contrast, 73, 56, and 31% of 1-OH-midazolam, 4ß-OH-cholesterol and 6ß-OH-cortisol variation was due to genetic effects. There was a low phenotypic correlation between the four CYP3A biomarkers. Only between midazolam and its 1-OH-metabolite, and between midazolam and 6ß-OH-cortisol we found significant bivariate genetic correlations. Midazolam AUC differed depending on the CYP3A4∗22 variant (p = 0.001) whereas plasma 4ß-OH-cholesterol was significantly lower in homozygous carriers of CYP3A5∗3 (p = 0.02). Apparently, non-genomic factors played a dominant role in the inter-individual variation of the CYP3A probe drug midazolam. A small intra-individual pharmacokinetic variation after repeated administration of midazolam was rated earlier as indication of high heritability of CYP3A activity, but according to present data that could also largely be due to constant environmental factors and/or heritability of liver blood flow. The higher heritabilities of 4ß-OH-cholesterol and of 1-OH-midazolam may deserve further research on the underlying factors beyond CYP3A genes. Clinical Trial Registration: ClinicalTrials.gov: NCT01845194 and EUDRA-CT: 2008-006223-31.

6.
Clin Pharmacol Ther ; 107(3): 628-638, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31593619

RESUMO

Thiamine is substrate of the hepatic uptake transporter organic cation transporter 1 (OCT1), and pathological lipid metabolism was associated with OCT1-dependent thiamine transport. However, it is unknown whether clinical pharmacokinetics of thiamine is modulated by OCT1 genotype. We analyzed thiamine transport in vitro, thiamine blood concentrations after high-dose and low-dose (nutritional) intake, and heritability of thiamine and thiamine-phosphate blood concentrations. The variant OCT1*2 had reduced and OCT1*3 to OCT1*6 had deficient thiamine uptake activity. However, pharmacokinetics of thiamine did not differ depending on OCT1 genotype. Further studies in primary human hepatocytes indicated that several cation transporters, including OCT1, OCT3, and THTR-2, contribute to hepatic uptake of thiamine. As much as 54% of the variation in thiamine and 75% in variation of thiamine monophosphate plasma concentrations was determined by heritable factors. Apparently, thiamine is not useful as a probe drug for OCT1 activity, but the high heritability, particularly of thiamine monophosphate, may stimulate further genomic research.


Assuntos
Hepatócitos/metabolismo , Fator 1 de Transcrição de Octâmero/genética , Tiamina/administração & dosagem , Adulto , Transporte Biológico , Relação Dose-Resposta a Droga , Feminino , Genótipo , Células HEK293 , Humanos , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Fator 1 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Tiamina/farmacocinética
7.
Front Pharmacol ; 10: 1297, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736764

RESUMO

Tyramine, formed by the decarboxylation of tyrosine, is a natural constituent of numerous food products. As an indirect sympathomimetic, it can have potentially dangerous hypertensive effects. In vitro data indicated that the pharmacokinetics of tyramine possibly depend on the organic cation transporter OCT1 genotype and on the CYP2D6 genotype. Since tyramine is a prototypic substrate of monoamine oxidase A (MAO-A), genetic polymorphisms in MAO-A may also be relevant. The aims of this study were to identify to what extent the interindividual variation in pharmacokinetics and pharmacodynamics of tyramine is determined by genetic polymorphisms in OCT1, CYP2D6, and MAO-A. Beyond that, we wanted to evaluate tyramine as probe drug for the in vivo activity of MAO-A and OCT1. Therefore, the pharmacokinetics, pharmacodynamics, and pharmacogenetics of tyramine were studied in 88 healthy volunteers after oral administration of a 400 mg dose. We observed a strong interindividual variation in systemic tyramine exposure, with a mean AUC of 3.74 min*µg/ml and a high mean CL/F ratio of 107 l/min. On average, as much as 76.8% of the dose was recovered in urine in form of the MAO-catalysed metabolite 4-hydroxyphenylacetic acid (4-HPAA), confirming that oxidative deamination by MAO-A is the quantitatively most relevant metabolic pathway. Systemic exposure of 4-HPAA varied only up to 3-fold, indicating no strong heritable variation in peripheral MAO-A activity. Systolic blood pressure increased by more than 10 mmHg in 71% of the volunteers and correlated strongly with systemic tyramine concentration. In less than 10% of participants, individually variable blood pressure peaks by >40 mmHg above baseline were observed at tyramine concentrations of >60 µg/l. Unexpectedly, the functionally relevant polymorphisms in OCT1 and CYP2D6, including the CYP2D6 poor and ultra-rapid metaboliser genotypes, did not significantly affect tyramine pharmacokinetics or pharmacodynamics. Also, the MOA-A genotypes, which had been associated in several earlier studies with neuropsychiatric phenotypes, had no significant effects on tyramine pharmacokinetics or its metabolism to 4-HPAA. Thus, variation in tyramine pharmacokinetics and pharmacodynamics is not explained by obvious genomic variation, and human tyramine metabolism did not indicate the existence of ultra-low or -high MAO-A activity.

8.
J Neurol Sci ; 398: 171-175, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30731304

RESUMO

BACKGROUND: Clinical investigations of brain death are supposed to prove absence of cerebral perfusion. However, only limited data are available documenting intracranial pressure (ICP) and cerebral perfusion pressure (CPP) during the development of brain death. Our study presents additional data to understand the course of ICP and CPP in patients developing brain death. MATERIAL AND METHODS: We analyzed retrospective data of 18 patients with ICP monitoring during the development of brain death due to primary brain lesions. ICP and CPP values were continuously measured between two clinically defined time points: 1. non-reactive and widened pupils, 2. brain death determination. We analyzed ICP and CPP at the above-mentioned end points. Additionally, we investigated maximum ICP and minimal CPP values between these time points. RESULTS: Patients developed fixed and dilated pupils with a median of 38 h before brain death determination. During brain death determination median ICP and median CPP were 103.5 and -2.5 mmHg, respectively. Maximum ICP before brain death determination was significantly higher and minimal CPP values were significantly lower compared to the time point of brain death. During the investigation period all patients experienced ICP values >95 mmHg and CPP < 10 mmHg. All but one patient had documented CPP values of ≤0 mmHg. This single patient had a minimum CPP of 8 mmHg with a maximum ICP of 145 mmHg. CONCLUSION: Cerebral perfusion pressure during brain death determination may be positive in some patients. Our results showed variable values of ICP and CPP. However, extremely elevated ICP values before or during brain death in combination with low CPP values suggest absence of cerebral perfusion. The occurrence of positive CPP values during brain death determination therefore depends on the time point at which brain death determination is performed.


Assuntos
Morte Encefálica/diagnóstico , Morte Encefálica/fisiopatologia , Circulação Cerebrovascular/fisiologia , Progressão da Doença , Pressão Intracraniana/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Midríase/diagnóstico , Midríase/fisiopatologia , Estudos Retrospectivos
9.
Clin Pharmacol Ther ; 105(1): 190-200, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29882324

RESUMO

Cycloguanil, the active metabolite of proguanil, acts on malaria schizonts in erythrocytes and hepatocytes. We analyzed the impact of the organic cation transporter OCT1 on hepatocellular uptake and pharmacokinetics of proguanil and cycloguanil. OCT1 transported both proguanil and cycloguanil. Common variants OCT1*3 and OCT1*4 caused a substantial decrease and OCT1*5 and OCT1*6 complete abolishment of proguanil uptake. In 39 healthy subjects, low-activity variants OCT1*3 and OCT1*4 had only minor effects on proguanil pharmacokinetics. However, both, cycloguanil area under the time-concentration curve and the cycloguanil-to-proguanil ratio were significantly dependent on number of these low-functional alleles (P = 0.02 for both). Together, CYP2C19, CYP3A5, OCT1 polymorphisms, and sex accounted for 61% of the variation in the cycloguanil-to-proguanil ratio. Most importantly, in vitro OCT1 inhibition caused a fivefold decrease of intracellular cycloguanil concentrations in primary human hepatocytes. In conclusion, OCT1-mediated uptake is a limiting step in bioactivation of proguanil, and OCT1 polymorphisms may affect proguanil efficacy against hepatic malaria schizonts.


Assuntos
Antimaláricos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fator 1 de Transcrição de Octâmero/deficiência , Proguanil/metabolismo , Triazinas/metabolismo , Adolescente , Adulto , Antimaláricos/farmacocinética , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Proguanil/farmacocinética , Triazinas/farmacocinética , Adulto Jovem
10.
Clin Pharmacol Ther ; 103(5): 868-878, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28791698

RESUMO

Fenoterol is a widely used anti-asthmatic and tocolytic agent, but high plasma concentrations of fenoterol may lead to severe and even fatal adverse reactions. We studied whether heritable deficiency of the liver organic cation transporter 1 (OCT1), a trait observed in 3% of Europeans and white Americans, affects fenoterol plasma concentrations and toxicity. OCT1 transported fenoterol with high affinity, and OCT1 inhibition in human hepatocytes reduced fenoterol uptake threefold. After administration of 180 µg of fenoterol to 39 healthy individuals, the OCT1-deficient individuals (zero active OCT1 alleles; n = 5) showed 1.9-fold greater systemic fenoterol exposure (P = 4.0 × 10-5 ) and 1.7-fold lower volume of distribution (P = 8.0 × 10-5 ). Correspondingly, the OCT1-deficient individuals had a 1.5-fold stronger increase in heart rate (P = 0.002), a 3.4-fold greater increase in blood glucose (P = 3.0 × 10-5 ), and significantly lower serum potassium levels. In conclusion, heritable OCT1 deficiency significantly increases plasma concentrations of fenoterol and may be an important factor underlying the excess mortality associated with fenoterol.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Fenoterol/efeitos adversos , Doenças Metabólicas/induzido quimicamente , Fator 1 de Transcrição de Octâmero/deficiência , Alelos , Transporte Biológico/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Sistema Cardiovascular/metabolismo , Células HEK293 , Frequência Cardíaca/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Doenças Metabólicas/metabolismo , Potássio/sangue
11.
PLoS Med ; 14(4): e1002286, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28441386

RESUMO

BACKGROUND: Graft-derived cell-free DNA (GcfDNA), which is released into the blood stream by necrotic and apoptotic cells, is a promising noninvasive organ integrity biomarker. In liver transplantation (LTx), neither conventional liver function tests (LTFs) nor immunosuppressive drug monitoring are very effective for rejection monitoring. We therefore hypothesized that the quantitative measurement of donor-derived cell-free DNA (cfDNA) would have independent value for the assessment of graft integrity, including damage from acute rejection. METHODS AND FINDINGS: Traditional LFTs were performed and plasma GcfDNA was monitored in 115 adults post-LTx at three German transplant centers as part of a prospective, observational, multicenter cohort trial. GcfDNA percentage (graft cfDNA/total cfDNA) was measured using droplet digital PCR (ddPCR), based on a limited number of predefined single nucleotide polymorphisms, enabling same-day turn-around. The same method was used to quantify blood microchimerism. GcfDNA was increased >50% on day 1 post-LTx, presumably from ischemia/reperfusion damage, but rapidly declined in patients without graft injury within 7 to 10 d to a median <10%, where it remained for the 1-y observation period. Of 115 patients, 107 provided samples that met preestablished criteria. In 31 samples taken from 17 patients during biopsy-proven acute rejection episodes, the percentage of GcfDNA was elevated substantially (median 29.6%, 95% CI 23.6%-41.0%) compared with that in 282 samples from 88 patients during stable periods (median 3.3%, 95% CI 2.9%-3.7%; p < 0.001). Only slightly higher values (median 5.9%, 95% CI 4.4%-10.3%) were found in 68 samples from 17 hepatitis C virus (HCV)-positive, rejection-free patients. LFTs had low overall correlations (r = 0.28-0.62) with GcfDNA and showed greater overlap between patient subgroups, especially between acute rejection and HCV+ patients. Multivariable logistic regression modeling demonstrated that GcfDNA provided additional LFT-independent information on graft integrity. Diagnostic sensitivity and specificity were 90.3% (95% CI 74.2%-98.0%) and 92.9% (95% CI 89.3%-95.6%), respectively, for GcfDNA at a threshold value of 10%. The area under the receiver operator characteristic curve was higher for GcfDNA (97.1%, 95% CI 93.4%-100%) than for same-day conventional LFTs (AST: 95.7%; ALT: 95.2%; γ-GT: 94.5%; bilirubin: 82.6%). An evaluation of microchimerism revealed that the maximum donor DNA in circulating white blood cells was only 0.068%. GcfDNA percentage can be influenced by major changes in host cfDNA (e.g., due to leukopenia or leukocytosis). One limitation of our study is that exact time-matched GcfDNA and LFT samples were not available for all patient visits. CONCLUSIONS: In this study, determination of GcfDNA in plasma by ddPCR allowed for earlier and more sensitive discrimination of acute rejection in LTx patients as compared with conventional LFTs. Potential blood microchimerism was quantitatively low and had no significant influence on GcfDNA value. Further research, which should ideally include protocol biopsies, will be needed to establish the practical value of GcfDNA measurements in the management of LTx patients.


Assuntos
DNA/sangue , Rejeição de Enxerto/sangue , Transplante de Fígado , Adulto , Idoso , Área Sob a Curva , Biomarcadores/sangue , Quimerismo , Feminino , Alemanha , Rejeição de Enxerto/diagnóstico , Hepacivirus , Humanos , Leucócitos/metabolismo , Testes de Função Hepática , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC
12.
Genome Med ; 8(1): 119, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27825374

RESUMO

BACKGROUND: Efflux transporters like MDR1 and MRP2 may modulate the pharmacokinetics of about 50 % of all drugs. It is currently unknown how much of the variation in the activities of important drug membrane transporters like MDR1 or MRP2 is determined by genetic or by environmental factors. In this study we assessed the heritability of the pharmacokinetics of talinolol as a putative probe drug for MDR1 and possibly other membrane transporters. METHODS: Talinolol pharmacokinetics were investigated in a repeated dose study in 42 monozygotic and 13 same-sex dizygotic twin pairs. The oral clearance of talinolol was predefined as the primary parameter. Heritability was analyzed by structural equation modeling and by within- and between-subject variance and talinolol clearance was correlated with polymorphisms in MDR1, MRP2, BCRP, MDR5, OATP1B1, and OCT1. RESULTS: Talinolol clearance varied approximately ninefold in the studied sample of healthy volunteers. The correlation of clearances between siblings was not significantly different for the monozygotic and dizygotic pairs. All data analyses consistently showed that variation of talinolol pharmacokinetics was mainly determined by environmental effects. Structural equation modeling attributed 53.5 % of the variation of oral clearance to common environmental effects influencing both siblings to the same extent and 46.5 % to unique environmental effects randomly affecting individual subjects. Talinolol pharmacokinetics were significantly dependent on sex, body mass index, total protein consumption, and vegetable consumption. CONCLUSIONS: The twin study revealed that environmental factors explained much more of the variation in pharmacokinetics of talinolol than genetic factors. TRIAL REGISTRATION: European clinical trials database number: EUDRA-CT 2008-006223-31. Registered 26 September 2008. ClinicalTrials.gov number: NCT01845194 .


Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Propanolaminas/farmacocinética , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Índice de Massa Corporal , Feminino , Interação Gene-Ambiente , Genótipo , Humanos , Masculino , Proteínas de Membrana Transportadoras , Proteína 2 Associada à Farmacorresistência Múltipla , Farmacogenética , Fatores Sexuais , Estudos em Gêmeos como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA