Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875592

RESUMO

The amino acid sequences of proteins have evolved over billions of years, preserving their structures and functions while responding to evolutionary forces. Are there conserved sequence and structural elements that preserve the protein folding mechanisms? The functionally diverse and ancient (ßα)1-8 TIM barrel motif may answer this question. We mapped the complex six-state folding free energy surface of a ∼3.6 billion y old, bacterial indole-3-glycerol phosphate synthase (IGPS) TIM barrel enzyme by equilibrium and kinetic hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS on the intact protein reported exchange in the native basin and the presence of two thermodynamically distinct on- and off-pathway intermediates in slow but dynamic equilibrium with each other. Proteolysis revealed protection in a small (α1ß2) and a large cluster (ß5α5ß6α6ß7) and that these clusters form cores of stability in Ia and Ibp The strongest protection in both states resides in ß4α4 with the highest density of branched aliphatic side chain contacts in the folded structure. Similar correlations were observed previously for an evolutionarily distinct archaeal IGPS, emphasizing a key role for hydrophobicity in stabilizing common high-energy folding intermediates. A bioinformatics analysis of IGPS sequences from the three superkingdoms revealed an exceedingly high hydrophobicity and surprising α-helix propensity for ß4, preceded by a highly conserved ßα-hairpin clamp that links ß3 and ß4. The conservation of the folding mechanisms for archaeal and bacterial IGPS proteins reflects the conservation of key elements of sequence and structure that first appeared in the last universal common ancestor of these ancient proteins.


Assuntos
Indol-3-Glicerolfosfato Sintase/metabolismo , Domínios Proteicos/fisiologia , Estrutura Secundária de Proteína/genética , Sequência de Aminoácidos/genética , Aminoácidos/genética , Proteínas de Bactérias/química , Ligação de Hidrogênio , Indol-3-Glicerolfosfato Sintase/fisiologia , Cinética , Modelos Moleculares , Conformação Proteica , Domínios Proteicos/genética , Dobramento de Proteína , Homologia de Sequência de Aminoácidos , Termodinâmica
2.
Biochemistry ; 59(39): 3650-3659, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32924445

RESUMO

Misfolding of Cu, Zn superoxide dismutase (SOD1) variants may lead to protein aggregation and ultimately amyotrophic lateral sclerosis (ALS). The mechanism and protein conformational changes during this process are complex and remain unclear. To study SOD1 variant aggregation at the molecular level and in solution, we chemically induced aggregation of a mutant variant (G93A SOD1) with trifluoroethanol (TFE) and used both native mass spectrometry (MS) to analyze the intact protein and fast photochemical oxidation of proteins (FPOP) to characterize the structural changes induced by TFE. We found partially unfolded G93A SOD1 monomers prior to oligomerization and identified regions of the N-terminus, C-terminus, and strands ß5, ß6 accountable for the partial unfolding. We propose that exposure of hydrophobic interfaces of these unstructured regions serves as a precursor to aggregation. Our results provide a possible mechanism and molecular basis for ALS-linked SOD1 misfolding and aggregation.


Assuntos
Agregados Proteicos/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Superóxido Dismutase/química , Trifluoretanol/farmacologia , Humanos , Espectrometria de Massas , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Pegadas de Proteínas , Espectrometria de Massas por Ionização por Electrospray
3.
J Biol Chem ; 294(37): 13708-13717, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31341015

RESUMO

Dozens of mutations throughout the sequence of the gene encoding superoxide dismutase 1 (SOD1) have been linked to toxic protein aggregation in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). A parsimonious explanation for numerous genotypes resulting in a common phenotype would be mutation-induced perturbation of the folding free-energy surface that increases the populations of high-energy states prone to aggregation. The absence of intermediates in the folding of monomeric SOD1 suggests that the unfolded ensemble is a potential source of aggregation. To test this hypothesis, here we dissected SOD1 into a set of peptides end-labeled with FRET probes to model the local behavior of the corresponding sequences in the unfolded ensemble. Using time-resolved FRET, we observed that the peptide corresponding to the Loop VII-ß8 sequence at the SOD1 C terminus was uniquely sensitive to denaturant. Utilizing a two-dimensional form of maximum entropy modeling, we demonstrate that the sensitivity to denaturant is the surprising result of a two-state-like transition from a compact to an expanded state. Variations of the peptide sequence revealed that the compact state involves a nonnative interaction between the disordered N terminus and the hydrophobic C terminus of the peptide. This nonnative intramolecular structure could serve as a precursor for intermolecular association and result in aggregation associated with ALS. We propose that this precursor would provide a common molecular target for therapeutic intervention in the dozens of ALS-linked SOD1 mutations.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Superóxido Dismutase-1/ultraestrutura , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Dissulfetos/química , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Modelos Moleculares , Mutação , Peptídeos/genética , Dobramento de Proteína , Multimerização Proteica , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(33): 16378-16383, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346089

RESUMO

Triosephosphate isomerase (TIM) barrel proteins have not only a conserved architecture that supports a myriad of enzymatic functions, but also a conserved folding mechanism that involves on- and off-pathway intermediates. Although experiments have proven to be invaluable in defining the folding free-energy surface, they provide only a limited understanding of the structures of the partially folded states that appear during folding. Coarse-grained simulations employing native centric models are capable of sampling the entire energy landscape of TIM barrels and offer the possibility of a molecular-level understanding of the readout from sequence to structure. We have combined sequence-sensitive native centric simulations with small-angle X-ray scattering and time-resolved Förster resonance energy transfer to monitor the formation of structure in an intermediate in the Sulfolobus solfataricus indole-3-glycerol phosphate synthase TIM barrel that appears within 50 µs and must at least partially unfold to achieve productive folding. Simulations reveal the presence of a major and 2 minor folding channels not detected in experiments. Frustration in folding, i.e., backtracking in native contacts, is observed in the major channel at the initial stage of folding, as well as late in folding in a minor channel before the appearance of the native conformation. Similarities in global and pairwise dimensions of the early intermediate, the formation of structure in the central region that spreads progressively toward each terminus, and a similar rate-limiting step in the closing of the ß-barrel underscore the value of combining simulation and experiment to unravel complex folding mechanisms at the molecular level.


Assuntos
Indol-3-Glicerolfosfato Sintase/química , Conformação Proteica , Dobramento de Proteína , Triose-Fosfato Isomerase/química , Sequência de Aminoácidos , Transferência Ressonante de Energia de Fluorescência , Indol-3-Glicerolfosfato Sintase/genética , Modelos Moleculares , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Sulfolobus solfataricus/enzimologia , Termodinâmica , Triose-Fosfato Isomerase/genética
5.
Proc Natl Acad Sci U S A ; 116(14): 6806-6811, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30877249

RESUMO

The successful de novo design of proteins can provide insights into the physical chemical basis of stability, the role of evolution in constraining amino acid sequences, and the production of customizable platforms for engineering applications. Previous guanidine hydrochloride (GdnHCl; an ionic denaturant) experiments of a designed, naturally occurring ßα fold, Di-III_14, revealed a cooperative, two-state unfolding transition and a modest stability. Continuous-flow mixing experiments in our laboratory revealed a simple two-state reaction in the microsecond to millisecond time range and consistent with the thermodynamic results. In striking contrast, the protein remains folded up to 9.25 M in urea, a neutral denaturant, and hydrogen exchange (HDX) NMR analysis in water revealed the presence of numerous high-energy states that interconvert on a time scale greater than seconds. The complex protection pattern for HDX corresponds closely with a pair of electrostatic networks on the surface and an extensive network of hydrophobic side chains in the interior of the protein. Mutational analysis showed that electrostatic and hydrophobic networks contribute to the resistance to urea denaturation for the WT protein; remarkably, single charge reversals on the protein surface restore the expected urea sensitivity. The roughness of the energy surface reflects the densely packed hydrophobic core; the removal of only two methyl groups eliminates the high-energy states and creates a smooth surface. The design of a very stable ßα fold containing electrostatic and hydrophobic networks has created a complex energy surface rarely observed in natural proteins.


Assuntos
Guanidina/química , Dobramento de Proteína , Ureia/química , Interações Hidrofóbicas e Hidrofílicas , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Eletricidade Estática
6.
Sci Rep ; 7: 44116, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28272524

RESUMO

The dynamics of globular proteins can be described in terms of transitions between a folded native state and less-populated intermediates, or excited states, which can play critical roles in both protein folding and function. Excited states are by definition transient species, and therefore are difficult to characterize using current experimental techniques. Here, we report an atomistic model of the excited state ensemble of a stabilized mutant of an extensively studied flavodoxin fold protein CheY. We employed a hybrid simulation and experimental approach in which an aggregate 42 milliseconds of all-atom molecular dynamics were used as an informative prior for the structure of the excited state ensemble. This prior was then refined against small-angle X-ray scattering (SAXS) data employing an established method (EROS). The most striking feature of the resulting excited state ensemble was an unstructured N-terminus stabilized by non-native contacts in a conformation that is topologically simpler than the native state. Using these results, we then predict incisive single molecule FRET experiments as a means of model validation. This study demonstrates the paradigm of uniting simulation and experiment in a statistical model to study the structure of protein excited states and rationally design validating experiments.


Assuntos
Flavodoxina/química , Dobramento de Proteína , Cinética , Simulação de Dinâmica Molecular , Conformação Proteica em Folha beta , Espalhamento a Baixo Ângulo
7.
Nat Commun ; 8: 14614, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262665

RESUMO

Sequence divergence of orthologous proteins enables adaptation to environmental stresses and promotes evolution of novel functions. Limits on evolution imposed by constraints on sequence and structure were explored using a model TIM barrel protein, indole-3-glycerol phosphate synthase (IGPS). Fitness effects of point mutations in three phylogenetically divergent IGPS proteins during adaptation to temperature stress were probed by auxotrophic complementation of yeast with prokaryotic, thermophilic IGPS. Analysis of beneficial mutations pointed to an unexpected, long-range allosteric pathway towards the active site of the protein. Significant correlations between the fitness landscapes of distant orthologues implicate both sequence and structure as primary forces in defining the TIM barrel fitness landscape and suggest that fitness landscapes can be translocated in sequence space. Exploration of fitness landscapes in the context of a protein fold provides a strategy for elucidating the sequence-structure-fitness relationships in other common motifs.


Assuntos
Indol-3-Glicerolfosfato Sintase/química , Mutação , Sulfolobus solfataricus/química , Thermotoga maritima/química , Thermus thermophilus/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Evolução Molecular , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Indol-3-Glicerolfosfato Sintase/genética , Indol-3-Glicerolfosfato Sintase/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato , Sulfolobus solfataricus/enzimologia , Termodinâmica , Thermotoga maritima/enzimologia , Thermus thermophilus/enzimologia
8.
J Am Soc Mass Spectrom ; 28(2): 389-392, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27924496

RESUMO

Incorporation of a reporter peptide in solutions submitted to fast photochemical oxidation of proteins (FPOP) allows for the correction of adventitious scavengers and enables the normalization and comparison of time-dependent results. Reporters will also be useful in differential experiments to control for the inclusion of a radical-reactive species. This incorporation provides a simple and quick check of radical dosage and allows comparison of FPOP results from day-to-day and lab-to-lab. Use of a reporter peptide in the FPOP workflow requires no additional measurements or spectrometers while building a more quantitative FPOP platform. It requires only measurement of the extent of reporter-peptide modification in a LC/MS/MS run, which is performed by using either data-dependent scanning or an inclusion list. Graphical Abstract ᅟ.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/química , Processos Fotoquímicos , Cromatografia Líquida , Sequestradores de Radicais Livres/química , Mutação , Conformação Proteica , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética , Fluxo de Trabalho
9.
Protein Sci ; 25(3): 662-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26660714

RESUMO

Measurements of protection against exchange of main chain amide hydrogens (NH) with solvent hydrogens in globular proteins have provided remarkable insights into the structures of rare high-energy states that populate their folding free-energy surfaces. Lacking, however, has been a unifying theory that rationalizes these high-energy states in terms of the structures and sequences of their resident proteins. The Branched Aliphatic Side Chain (BASiC) hypothesis has been developed to explain the observed patterns of protection in a pair of TIM barrel proteins. This hypothesis supposes that the side chains of isoleucine, leucine, and valine (ILV) residues often form large hydrophobic clusters that very effectively impede the penetration of water to their underlying hydrogen bond networks and, thereby, enhance the protection against solvent exchange. The linkage between the secondary and tertiary structures enables these ILV clusters to serve as cores of stability in high-energy partially folded states. Statistically significant correlations between the locations of large ILV clusters in native conformations and strong protection against exchange for a variety of motifs reported in the literature support the generality of the BASiC hypothesis. The results also illustrate the necessity to elaborate this simple hypothesis to account for the roles of adjacent hydrocarbon moieties in defining stability cores of partially folded states along folding reaction coordinates.


Assuntos
Isoleucina/química , Leucina/química , Estabilidade Proteica , Proteínas/química , Valina/química , Sequência de Aminoácidos , Animais , Bases de Dados de Proteínas , Fator 1 de Crescimento de Fibroblastos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nuclease do Micrococo/química , Modelos Moleculares , Mioglobina/química , Conformação Proteica , Ribonuclease H/química , Alinhamento de Sequência , Staphylococcus/química
10.
Biochemistry ; 55(1): 79-91, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26666584

RESUMO

The ensemble of conformers of globular protein molecules immediately following transfer from unfolding to folding conditions is assumed to be collapsed though still disordered, as the first steps of the folding pathway are initiated. In order to test the hypothesis that long loop closure transitions are part of the initiation of the folding pathway, our groups are studying the initiation of the folding transition of a model protein by time-resolved excitation energy transfer (trFRET) detected fast kinetics experiments. Site-specific double labeling is used to study the timing of conformational transitions of individual loop forming chain segments at the microsecond time regime. Previously, it was shown that at least three long loops in the Escherichia coli adenylate kinase (AK) molecule close within the first 5 ms of folding of AK, while the main global folding transition occurs in a time regime of seconds. In order to enhance the time resolution of the kinetics experiments to the microsecond time regime and determine the rate of closure of the two N terminal loops (loop I residues 1-26 and loop II residues 29-72), we applied a continuous flow based double kinetics experiment. These measurements enabled us to obtain a microsecond series of transient time dependent distributions of distances between the ends of the labeled loops. Analysis of the trFRET experiments show that the N terminal loop (loop I) is closed within less than 60 µs after the initiation of refolding. Loop II is also mostly closed within that time step but shows an additional small reduction of the mean end-to-end distance in a second phase at a rate of 0.005 µs(-1). This second phase can either reflect tightening of a loosely closed loop in the ensemble of conformers or may reflect two subpopulations in the ensemble, which differ in the rate of closure of loop II, but not in the rate of closure of loop I. This study shows the very fast closure of long loops in the otherwise disordered backbone and fine details of the very early hidden pretransition state steps that are essential for the fast and efficient folding of the protein molecule.


Assuntos
Adenilato Quinase/química , Escherichia coli/enzimologia , Dobramento de Proteína , Escherichia coli/química , Transferência Ressonante de Energia de Fluorescência , Cinética , Modelos Moleculares , Conformação Proteica , Redobramento de Proteína
11.
Proc Natl Acad Sci U S A ; 112(35): 10832-6, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26195768

RESUMO

The US research enterprise is under significant strain due to stagnant funding, an expanding workforce, and complex regulations that increase costs and slow the pace of research. In response, a number of groups have analyzed the problems and offered recommendations for resolving these issues. However, many of these recommendations lacked follow-up implementation, allowing the damage of stagnant funding and outdated policies to persist. Here, we analyze nine reports published since the beginning of 2012 and consolidate over 250 suggestions into eight consensus recommendations made by the majority of the reports. We then propose how to implement these consensus recommendations, and we identify critical issues, such as improving workforce diversity and stakeholder interactions, on which the community has yet to achieve consensus.


Assuntos
Pesquisa Biomédica , Consenso , Guias como Assunto , Apoio à Pesquisa como Assunto , Apoio ao Desenvolvimento de Recursos Humanos , Estados Unidos
12.
J Mol Biol ; 427(2): 443-53, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25311861

RESUMO

The folding pathway of Escherichia coli RNase H is one of the best experimentally characterized for any protein. In spite of this, spectroscopic studies have never captured the earliest events. Using continuous-flow microfluidic mixing, we have now observed the first several milliseconds of folding by monitoring the tryptophan fluorescence lifetime (60 µs dead time). Two folding intermediates are observed, the second of which is the previously characterized I(core) millisecond intermediate. The new earlier intermediate is likely on-pathway and appears to have long-range non-native structure, providing a rare example of such non-native structure formation in a folding pathway. The tryptophan fluorescence lifetimes also suggest a deviation from native packing in the second intermediate, I(core). Similar results from a fragment of RNase H demonstrate that only half of the protein is significantly involved in this early structure formation. These studies give us a view of the formation of tertiary structure on the folding pathway, which complements previous hydrogen-exchange studies that monitored only secondary structure and observed sequential native structure formation. Our results provide detailed folding information on both a timescale and a size-scale accessible to all-atom molecular dynamics simulations of protein folding.


Assuntos
Escherichia coli/enzimologia , Dobramento de Proteína , Ribonuclease H/química , Escherichia coli/genética , Microfluídica , Modelos Moleculares , Estrutura Molecular , Desnaturação Proteica , Estrutura Secundária de Proteína , Ribonuclease H/genética , Espectrometria de Fluorescência , Triptofano/química
13.
Proc Natl Acad Sci U S A ; 111(29): 10562-7, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002512

RESUMO

Folding of globular proteins can be envisioned as the contraction of a random coil unfolded state toward the native state on an energy surface rough with local minima trapping frustrated species. These substructures impede productive folding and can serve as nucleation sites for aggregation reactions. However, little is known about the relationship between frustration and its underlying sequence determinants. Chemotaxis response regulator Y (CheY), a 129-amino acid bacterial protein, has been shown previously to populate an off-pathway kinetic trap in the microsecond time range. The frustration has been ascribed to premature docking of the N- and C-terminal subdomains or, alternatively, to the formation of an unproductive local-in-sequence cluster of branched aliphatic side chains, isoleucine, leucine, and valine (ILV). The roles of the subdomains and ILV clusters in frustration were tested by altering the sequence connectivity using circular permutations. Surprisingly, the stability and buried surface area of the intermediate could be increased or decreased depending on the location of the termini. Comparison with the results of small-angle X-ray-scattering experiments and simulations points to the accelerated formation of a more compact, on-pathway species for the more stable intermediate. The effect of chain connectivity in modulating the structures and stabilities of the early kinetic traps in CheY is better understood in terms of the ILV cluster model. However, the subdomain model captures the requirement for an intact N-terminal domain to access the native conformation. Chain entropy and aliphatic-rich sequences play crucial roles in biasing the early events leading to frustration in the folding of CheY.


Assuntos
Dobramento de Proteína , Análise de Sequência de Proteína , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Simulação por Computador , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil , Modelos Moleculares , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Termodinâmica , Difração de Raios X
14.
J Mol Biol ; 426(9): 1980-94, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24607691

RESUMO

It is generally held that random-coil polypeptide chains undergo a barrier-less continuous collapse when the solvent conditions are changed to favor the fully folded native conformation. We test this hypothesis by probing intramolecular distance distributions during folding in one of the paradigms of folding reactions, that of cytochrome c. The Trp59-to-heme distance was probed by time-resolved Förster resonance energy transfer in the microsecond time range of refolding. Contrary to expectation, a state with a Trp59-heme distance close to that of the guanidinium hydrochloride (GdnHCl) denatured state is present after ~27 µs of folding. A concomitant decrease in the population of this state and an increase in the population of a compact high-FRET (Förster resonance energy transfer) state (efficiency>90%) show that the collapse is barrier limited. Small-angle X-ray scattering (SAXS) measurements over a similar time range show that the radius of gyration under native favoring conditions is comparable to that of the GdnHCl denatured unfolded state. An independent comprehensive global thermodynamic analysis reveals that marginally stable partially folded structures are also present in the nominally unfolded GdnHCl denatured state. These observations suggest that specifically collapsed intermediate structures with low stability in rapid equilibrium with the unfolded state may contribute to the apparent chain contraction observed in previous fluorescence studies using steady-state detection. In the absence of significant dynamic averaging of marginally stable partially folded states and with the use of probes sensitive to distance distributions, barrier-limited chain contraction is observed upon transfer of the GdnHCl denatured state ensemble to native-like conditions.


Assuntos
Citocromos c/química , Citocromos c/metabolismo , Dobramento de Proteína , Transferência Ressonante de Energia de Fluorescência , Cinética , Conformação Proteica , Espalhamento a Baixo Ângulo
15.
J Biol Chem ; 289(12): 8264-76, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24497641

RESUMO

Pathological alteration of TDP-43 (TAR DNA-binding protein-43), a protein involved in various RNA-mediated processes, is a hallmark feature of the neurodegenerative diseases amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Fragments of TDP-43, composed of the second RNA recognition motif (RRM2) and the disordered C terminus, have been observed in cytoplasmic inclusions in sporadic amyotrophic lateral sclerosis cases, suggesting that conformational changes involving RRM2 together with the disordered C terminus play a role in aggregation and toxicity. The biophysical data collected by CD and fluorescence spectroscopies reveal a three-state equilibrium unfolding model for RRM2, with a partially folded intermediate state that is not observed in RRM1. Strikingly, a portion of RRM2 beginning at position 208, which mimics a cleavage site observed in patient tissues, increases the population of this intermediate state. Mutually stabilizing interactions between the domains in the tethered RRM1 and RRM2 construct reduce the population of the intermediate state and enhance DNA/RNA binding. Despite the high sequence homology of the two domains, a network of large hydrophobic residues in RRM2 provides a possible explanation for the increased stability of RRM2 compared with RRM1. The cluster analysis suggests that the intermediate state may play a functional role by enhancing access to the nuclear export signal contained within its sequence. The intermediate state may also serve as a molecular hazard linking productive folding and function with pathological misfolding and aggregation that may contribute to disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Dobramento de Proteína , RNA/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Termodinâmica
16.
PLoS One ; 8(4): e61210, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613814

RESUMO

Mutations in the gene encoding human SOD1 (hSOD1) can cause amyotrophic lateral sclerosis (ALS) yet the mechanism by which mutant SOD1 can induce ALS is not fully understood. There is currently no cure for ALS or treatment that significantly reduces symptoms or progression. To develop tools to understand the protein conformations present in mutant SOD1-induced ALS and as possible immunotherapy, we isolated and characterized eleven unique human monoclonal antibodies specific for hSOD1. Among these, five recognized distinct linear epitopes on hSOD1 that were not available in the properly-folded protein but were available on forms of protein with some degree of misfolding. The other six antibodies recognized conformation-dependent epitopes that were present in the properly-folded protein with two different recognition profiles: three could bind hSOD1 dimer or monomer and the other three were specific for hSOD1 dimer only. Antibodies with the capacity to bind hSOD1 monomer were able to prevent increased hydrophobicity when mutant hSOD1 was exposed to increased temperature and EDTA, suggesting that the antibodies stabilized the native structure of hSOD1. Two antibodies were tested in a G93A mutant hSOD1 transgenic mouse model of ALS but did not yield a statistically significant increase in overall survival. It may be that the two antibodies selected for testing in the mouse model were not effective for therapy or that the model and/or route of administration were not optimal to produce a therapeutic effect. Therefore, additional testing will be required to determine therapeutic potential for SOD1 mutant ALS and potentially some subset of sporadic ALS.


Assuntos
Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos/imunologia , Epitopos/imunologia , Superóxido Dismutase/imunologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/enzimologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/uso terapêutico , Afinidade de Anticorpos , Epitopos/química , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoprecipitação , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica , Superóxido Dismutase/química
17.
J Mol Biol ; 425(6): 1065-81, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23333740

RESUMO

Imidazole-3-glycerol phosphate synthase is a heterodimeric allosteric enzyme that catalyzes consecutive reactions in imidazole biosynthesis through its HisF and HisH subunits. The unusually slow unfolding reaction of the isolated HisF TIM barrel domain from the thermophilic bacteria, Thermotoga maritima, enabled an NMR-based site-specific analysis of the main-chain hydrogen bonds that stabilize its native conformation. Very strong protection against exchange with solvent deuterium in the native state was found in a subset of buried positions in α-helices and pervasively in the underlying ß-strands associated with a pair of large clusters of isoleucine, leucine and valine (ILV) side chains located in the α7(ßα)8(ßα)1-2 and α2(ßα)3-6ß7 segments of the (ßα)8 barrel. The most densely packed region of the large cluster, α3(ßα)4-6ß7, correlates closely with the core of stability previously observed in computational, protein engineering and NMR dynamics studies, demonstrating a key role for this cluster in determining the thermodynamic and structural properties of the native state of HisF. When considered with the results of previous studies where ILV clusters were found to stabilize the hydrogen-bonded networks in folding intermediates for other TIM barrel proteins, it appears that clusters of branched aliphatic side chains can serve as cores of stability across the entire folding reaction coordinate of one of the most common motifs in biology.


Assuntos
Aminoidrolases/química , Proteínas de Bactérias/química , Thermotoga maritima/enzimologia , Motivos de Aminoácidos , Aminoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Deutério , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Termodinâmica
18.
J Am Chem Soc ; 135(5): 1882-90, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23293932

RESUMO

Recent molecular dynamics simulations have suggested important roles for nanoscale dewetting in the stability, function, and folding dynamics of proteins. Using a synergistic simulation-experimental approach on the αTS TIM barrel protein, we validated this hypothesis by revealing the occurrence of drying inside hydrophobic amino acid clusters and its manifestation in experimental measures of protein stability and structure. Cavities created within three clusters of branched aliphatic amino acids [isoleucine, leucine, and valine (ILV) clusters] were found to experience strong water density fluctuations or intermittent dewetting transitions in simulations. Individually substituting 10 residues in the large ILV cluster at the N-terminus with less hydrophobic alanines showed a weakening or diminishing effect on dewetting that depended on the site of the mutation. Our simulations also demonstrated that replacement of buried leucines with isosteric, polar asparagines enhanced the wetting of the N- and C-terminal clusters. The experimental results on the stability, secondary structure, and compactness of the native and intermediate states for the asparagine variants are consistent with the preferential drying of the large N-terminal cluster in the intermediate. By contrast, the region encompassing the small C-terminal cluster experiences only partial drying in the intermediate, and its structure and stability are unaffected by the asparagine substitution. Surprisingly, the structural distortions required to accommodate the replacement of leucine by asparagine in the N-terminal cluster revealed the existence of alternative stable folds in the native basin. This combined simulation-experimental study demonstrates the critical role of drying within hydrophobic ILV clusters in the folding and stability of the αTS TIM barrel.


Assuntos
Simulação de Dinâmica Molecular , Triose-Fosfato Isomerase/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Estabilidade Proteica , Termodinâmica , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
19.
J Mol Biol ; 424(3-4): 192-202, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22999954

RESUMO

The rate-limiting step in the formation of the native dimeric state of human Cu, Zn superoxide dismutase (SOD1) is a very slow monomer folding reaction that governs the lifetime of its unfolded state. Mutations at dozens of sites in SOD1 are known to cause a fatal motor neuron disease, amyotrophic lateral sclerosis, and recent experiments implicate the unfolded state as a source of soluble oligomers and histologically observable aggregates thought to be responsible for toxicity. To determine the thermodynamic properties of the transition state ensemble (TSE) limiting the folding of this high-contact-order ß-sandwich motif, we performed a combined thermal/urea denaturation thermodynamic/kinetic analysis. The barriers to folding and unfolding are dominated by the activation enthalpy at 298 K and neutral pH; the activation entropy is favorable and reduces the barrier height for both reactions. The absence of secondary structure formation or large-scale chain collapse prior to crossing the barrier for folding led to the conclusion that dehydration of nonpolar surfaces in the TSE is responsible for the large and positive activation enthalpy. Although the activation entropy favors the folding reaction, the transition from the unfolded state to the native state is entropically disfavored at 298 K. The opposing entropic contributions to the free energies of the TSE and the native state during folding provide insights into structural properties of the TSE. The results also imply a crucial role for water in governing the productive folding reaction and enhancing the propensity for the aggregation of SOD1.


Assuntos
Dobramento de Proteína , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Superóxido Dismutase-1 , Temperatura , Termodinâmica , Ureia/metabolismo
20.
J Mol Biol ; 410(2): 329-42, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21554889

RESUMO

The characterization of microsecond dynamics in the folding of multisubdomain proteins has been a major challenge in understanding their often complex folding mechanisms. Using a continuous-flow mixing device coupled with fluorescence lifetime detection, we report the microsecond folding dynamics of dihydrofolate reductase (DHFR), a two-subdomain α/ß/α sandwich protein known to begin folding in this time range. The global dimensions of early intermediates were monitored by Förster resonance energy transfer, and the dynamic properties of the local Trp environments were monitored by fluorescence lifetime detection. We found that substantial collapse occurs in both the locally connected adenosine binding subdomain and the discontinuous loop subdomain within 35 µs of initiation of folding from the urea unfolded state. During the fastest observable ∼550 µs phase, the discontinuous loop subdomain further contracts, concomitant with the burial of Trp residue(s), as both subdomains achieve a similar degree of compactness. Taken together with previous studies in the millisecond time range, a hierarchical assembly of DHFR--in which each subdomain independently folds, subsequently docks, and then anneals into the native conformation after an initial heterogeneous global collapse--emerges. The progressive acquisition of structure, beginning with a continuously connected subdomain and spreading to distal regions, shows that chain entropy is a significant organizing principle in the folding of multisubdomain proteins and single-domain proteins. Subdomain folding also provides a rationale for the complex kinetics often observed.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Dobramento de Proteína , Tetra-Hidrofolato Desidrogenase/química , Motivos de Aminoácidos/genética , Substituição de Aminoácidos/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Conformação Proteica , Estrutura Terciária de Proteína/genética , Espalhamento a Baixo Ângulo , Tetra-Hidrofolato Desidrogenase/genética , Termodinâmica , Fatores de Tempo , Triptofano/química , Triptofano/genética , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA