Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Pest Manag Sci ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647195

RESUMO

BACKGROUND: Xylella fastidiosa is a multi-host bacterium that can be detected in hundreds of plant species including several crops. Diseases caused by X. fastidiosa are considered a threat to global food production. The primary method for managing diseases caused by X. fastidiosa involves using insecticides to control the vector. Hence, it is necessary to adopt new and sustainable disease management technologies to control not only the insect but also the bacteria and plant health. We demonstrated that N-acetylcysteine (NAC), a low-cost cysteine analogue, is a sustainable molecule that can be used in agriculture to decrease the damage caused by X. fastidiosa and improve plant health. RESULTS: Using 15N-NAC we proved that this analogue was absorbed by the roots and transported to different parts of the plant. Inside the plant, NAC reduced the bacterial population by 60-fold and the number of xylem vessels blocked by bacterial biofilms. This reflected in a recovery of 0.28-fold of the daily sap flow compared to health plants. In addition, NAC-treated citrus variegated chlorosis (CVC) plants decreased the oxidative stress by improving the activity of detoxifying enzymes. Moreover, the use of NAC in field conditions positively contributed to the increase in fruit yield of CVC-diseased plants. CONCLUSION: Our research not only advances the understanding of NAC absorption in plants, but also indicates its dual effect as an antimicrobial and antioxidant molecule. This, in turn, negatively affects bacterial survival while improving plant health by decreasing oxidative stress. Overall, the positive field-based evidence supports the viability of NAC as a sustainable agricultural application. © 2024 Society of Chemical Industry.

2.
Chemosphere ; 308(Pt 3): 136468, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36116622

RESUMO

Glyphosate excessive use is reported in Brazilian citrus orchards, whereas there is speculation about its consequences and the published studies are contradictory and inconclusive. This study aimed to describe the possible harmful effects by simulating glyphosate drift directly to the leaves of ∼4-yr-old citrus plants. As major results, glyphosate doses >360 g ae ha-1 increased the shikimate accumulation in leaves (up to 2.3-times above control), which was increased after a second glyphosate application (up to 3.5-times above control), even after a 240-d interval. Interestingly, shikimate accumulation was occasionally related to a dose-response of the herbicide at specific times; however, the doses had their accumulation peak on determined dates. These accumulations were directly correlated to reduced net photosynthesis even months after the glyphosate sprays. Quantum productivity based on electron transport through the photosystem II and apparent electron transport reductions up to 17% were also observed during the entire experiment course. Similarly, quantum productivity based on CO2 assimilation of glyphosate sprayed leaves decreased up to four times compared to the control after the second application. Glyphosate doses >360 g ae ha-1 increased stomatal conductance and transpiration as the carboxylation efficiency decreased, evidencing a carbon drainage in the Calvin-Benson cycle. These metabolic and physiological disturbances suggest possible photooxidative damage and an increase in photorespiration, which may be a mitigation strategy by the citrus plants to glyphosate effects, by the cost of reducing the citrus fruit yield (up to 57%). It is concluded that glyphosate phytotoxicity damages citrus plants over time due to chronic disturbances in the shikimate pathway and photosynthesis, even when there are no symptoms. This study is the first report to demonstrate how glyphosate damages citrus trees beyond the shikimate pathway.


Assuntos
Citrus , Herbicidas , Carbono/farmacologia , Dióxido de Carbono/metabolismo , Glicina/análogos & derivados , Herbicidas/toxicidade , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Ácido Chiquímico/metabolismo , Árvores/metabolismo , Glifosato
3.
Front Plant Sci ; 12: 731314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721459

RESUMO

This study addresses the interactive effects of deficit irrigation and huanglongbing (HLB) infection on the physiological, biochemical, and oxidative stress responses of sweet orange trees. We sought to answer: (i) What are the causes for the reduction in water uptake in HLB infected plants? (ii) Is the water status of plants negatively affected by HLB infection? (iii) What are the key physiological traits impaired in HLB-infected plants? and (iv) What conditions can mitigate both disease severity and physiological/biochemical impairments in HLB-infected plants? Two water management treatments were applied for 11 weeks to 1-year-old-trees that were either healthy (HLB-) or infected with HLB (+) and grown in 12-L pots. Half of the trees were fully irrigated (FI) to saturation, whereas half were deficit-irrigated (DI) using 40% of the water required to saturate the substrate. Our results demonstrated that: reduced water uptake capacity in HLB+ plants was associated with reduced root growth, leaf area, stomatal conductance, and transpiration. Leaf water potential was not negatively affected by HLB infection. HLB increased leaf respiration rates (ca. 41%) and starch synthesis, downregulated starch breakdown, blocked electron transport, improved oxidative stress, and reduced leaf photosynthesis (ca. 57%) and photorespiration (ca.57%). Deficit irrigation reduced both leaf respiration (ca. 45%) and accumulation of starch (ca.53%) by increasing maltose (ca. 20%), sucrose, glucose, and fructose contents in the leaves, decreasing bacterial population (ca. 9%) and triggering a series of protective measures against further impairments in the physiology and biochemistry of HLB-infected plants. Such results provide a more complete physiological and biochemical overview of HLB-infected plants and can guide future studies to screen genetic tolerance to HLB and improve management strategies under field orchard conditions.

4.
Plant Physiol Biochem ; 154: 11-20, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32516683

RESUMO

Root plasma membrane H+-ATPase electrochemical equilibrium for optimum coffee plant growth can be modulated by specific ammonium:nitrate (NO3-:NH4+) ratio supply. This study aimed to evaluate the coffee seedlings responses to varying ammonium:nitrate (NO3-:NH4+) ratio and to depict how much NO3- and NH4+ plants can use in terms of growth, nitrogen metabolism, amino acids profile and regulation of root plasma membrane H+-ATPase. Coffee plants were grown in nutrient solution with the following NO3-:NH4+ ratios (%): 100:0; 87.5:12.5; 50:50; 0:100. Plants were grown in nutrient solution for 90 days and evaluated for growth, nitrate reductase activity as well as the modulation of H+-ATPase activity in the plasma membrane of the roots, amino acids profile, chlorophyll a fluorescence parameters and estimated cations and anions taken up by plants. The plants treated with the 87.5:12.5 and 50:50 NO3-:NH4+ ratio showed higher ability to absorb nutrients maintaining balanced uptake and as a consequence, 6% and 29%, the highest dry mass yield as compared to the 0:100 NO3-:NH4+ ratio. In addition, plants supplied with the 87.5:12.5 and 50:50 NO3-:NH4+ ratio had respectively, 58% and 94%, greater photosynthetic capability. Those data suggest that farmers and plant nurseries could implement the 50:50 NO3-:NH4+ ratio of nitrogen sources at coffee plantations and seedlings.


Assuntos
Aminoácidos/metabolismo , Membrana Celular/enzimologia , Café/crescimento & desenvolvimento , Nitrogênio/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Compostos de Amônio/metabolismo , Nitratos/metabolismo , Raízes de Plantas/metabolismo , Plântula
5.
Physiol Plant ; 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29667213

RESUMO

Antioxidant enzymatic responses in Citrus leaves under Cu-induced stress depends on rootstock genotypes. However, there is a lack of information about how woody plants recover growth capacity after exposure to elevated Cu and whether growth is affected by the redistribution of the metal to new vegetative parts and consequently whether photosynthesis is affected. Therefore, the biomass of plants and Cu concentrations in new leaf flushes were determined in young citrus trees grafted onto contrasting rootstocks [Swingle citrumelo (SW) and Rangpur lime (RL)]. Photosynthetic rate, chlorophyll fluorescence and antioxidant enzymatic systems were evaluated in plants previously grown in nutrient solution with Cu varying from low to high levels and with no added Cu. Both rootstocks exhibited reduced plant growth under Cu toxicity. However, trees grafted onto RL exhibited better growth recovery after Cu excess, which was dependent on the modulation of antioxidant enzyme activities in roots and leaves that maintained the integrity of the photosynthetic apparatus. In contrast, plants grafted onto SW exhibited a lower photosynthetic rate at the lowest available Cu concentration. Although the highest accumulation of Cu occurred in citrus roots, the redistribution of the nutrient to new vegetative parts was proportional to the Cu concentration in the roots.

6.
Front Plant Sci ; 7: 224, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973670

RESUMO

In Citrus, water, nutrient transport and thereby fruit production, are influenced among other factors, by the interaction between rootstock and boron (B) nutrition. This study aimed to investigate how B affects the anatomical structure of roots and leaves as well as leaf gas exchange in sweet orange trees grafted on two contrasting rootstocks in response to B supply. Plants grafted on Swingle citrumelo or Sunki mandarin were grown in a nutrient solution of varying B concentration (deficient, adequate, and excessive). Those grafted on Swingle were more tolerant to both B deficiency and toxicity than those on Sunki, as revealed by higher shoot and root growth. In addition, plants grafted on Sunki exhibited more severe anatomical and physiological damages under B deficiency, showing thickening of xylem cell walls and impairments in whole-plant leaf-specific hydraulic conductance and leaf CO2 assimilation. Our data revealed that trees grafted on Swingle sustain better growth under low B availablitlity in the root medium and still respond positively to increased B levels by combining higher B absorption and root growth as well as better organization of xylem vessels. Taken together, those traits improved water and B transport to the plant canopy. Under B toxicity, Swingle rootstock would also favor plant growth by reducing anatomical and ultrastructural damage to leaf tissue and improving water transport compared with plants grafted on Sunki. From a practical point of view, our results highlight that B management in citrus orchards shall take into account rootstock varieties, of which the Swingle rootstock was characterized by its performance on regulating anatomical and ultrastructural damages, improving water transport and limiting negative impacts of B stress conditions on plant growth.

7.
PLoS One ; 10(3): e0116903, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25751056

RESUMO

The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay) that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff) and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays.


Assuntos
Citrus/crescimento & desenvolvimento , Fertilizantes/análise , Zinco/metabolismo , Citrus/metabolismo , Frutas/química , Frutas/crescimento & desenvolvimento , Folhas de Planta/química , Solo/química , Zinco/análise , Zinco/química , Isótopos de Zinco/química
8.
Front Plant Sci ; 4: 39, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23526060

RESUMO

Tissue analysis is commonly used in ecology and agronomy to portray plant nutrient signatures. Nutrient concentration data, or ionomes, belongs to the compositional data class, i.e., multivariate data that are proportions of some whole, hence carrying important numerical properties. Statistics computed across raw or ordinary log-transformed nutrient data are intrinsically biased, hence possibly leading to wrong inferences. Our objective was to present a sound and robust approach based on a novel nutrient balance concept to classify plant ionomes. We analyzed leaf N, P, K, Ca, and Mg of two wild and six domesticated fruit species from Canada, Brazil, and New Zealand sampled during reproductive stages. Nutrient concentrations were (1) analyzed without transformation, (2) ordinary log-transformed as commonly but incorrectly applied in practice, (3) additive log-ratio (alr) transformed as surrogate to stoichiometric rules, and (4) converted to isometric log-ratios (ilr) arranged as sound nutrient balance variables. Raw concentration and ordinary log transformation both led to biased multivariate analysis due to redundancy between interacting nutrients. The alr- and ilr-transformed data provided unbiased discriminant analyses of plant ionomes, where wild and domesticated species formed distinct groups and the ionomes of species and cultivars were differentiated without numerical bias. The ilr nutrient balance concept is preferable to alr, because the ilr technique projects the most important interactions between nutrients into a convenient Euclidean space. This novel numerical approach allows rectifying historical biases and supervising phenotypic plasticity in plant nutrition studies.

9.
HU rev ; 12(1): 39-50, jan.-abr. 1985. tab
Artigo em Português | LILACS | ID: lil-29575

RESUMO

Enfatiza-se a importância da caracterizaçäo e tratamento da H.A. na gravidez e apresentam 36 gestantes hipertensas distribuídas em 4 grupos, de acordo com o tipo de H.A. e o esquema terapêutico empregado. Na H.A. leve observou-se que a metil DOPA e a clorpromazina controlaram a P.A., porém, com a clorpromazina houve menor ganho de peso. Na H.A. moderada, empregou-se MD + clorpromazina e clonidina + clorpromazina e observou-se que ambos os esquemas controlaram a P.A. na gestaçäo. Näo se observou efeito colateral maior nos esquemas terapêuticos empregados


Assuntos
Gravidez , Humanos , Feminino , Clorpromazina/uso terapêutico , Clonidina/uso terapêutico , Complicações Cardiovasculares na Gravidez/tratamento farmacológico , Hipertensão/tratamento farmacológico , Metildopa/uso terapêutico , Quimioterapia Combinada
10.
HE rev ; 11(2): 93-104, maio-ago. 1984. tab, ilus
Artigo em Português | LILACS | ID: lil-32094

RESUMO

Apresenta-se um caso de provável nefropatia lúpica em uma paciente jovem que se tornou gestante, mantida com corticosteróide em dose baixa durante toda a gestaçäo, resultando feto sem anormalidades. Discute-se o diagnóstico diferencial principalmente com a glomerulonefrite da endocardite bacteriana e as intercorrências possíveis de ocorrer durante a gestaçäo com nefropatia lúpica. Enfatiza-se a importância do diagnóstico histopatológico da nefropatia e o controle da atividade lúpica para o êxito da gestaçäo


Assuntos
Humanos , Feminino , Gravidez , Adulto , Nefropatias/etiologia , Complicações Infecciosas na Gravidez , Lúpus Eritematoso Sistêmico/complicações , Nefropatias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA