Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36899811

RESUMO

Disentangling phylogenetic and phylogeographic patterns is fundamental to reconstruct the evolutionary histories of taxa and assess their actual conservation status. Therefore, in this study, for the first time, the most exhaustive biogeographic history of European wildcat (Felis silvestris) populations was reconstructed by typing 430 European wildcats, 213 domestic cats, and 72 putative admixed individuals, collected across the entire species' distribution range, at a highly diagnostic portion of the mitochondrial ND5 gene. Phylogenetic and phylogeographic analyses identified two main ND5 lineages (D and W) roughly associated with domestic and wild polymorphisms. Lineage D included all domestic cats, 83.3% of putative admixed individuals, and also 41.4% of wildcats; these latter mostly showed haplotypes belonging to sub-clade Ia, that diverged about 37,700 years ago, long pre-dating any evidence for cat domestication. Lineage W included all the remaining wildcats and putative admixed individuals, spatially clustered into four main geographic groups, which started to diverge about 64,200 years ago, corresponding to (i) the isolated Scottish population, (ii) the Iberian population, (iii) a South-Eastern European cluster, and (iv) a Central European cluster. Our results suggest that the last Pleistocene glacial isolation and subsequent re-expansion from Mediterranean and extra-Mediterranean glacial refugia were pivotal drivers in shaping the extant European wildcat phylogenetic and phylogeographic patterns, which were further modeled by both historical natural gene flow among wild lineages and more recent wild x domestic anthropogenic hybridization, as confirmed by the finding of F. catus/lybica shared haplotypes. The reconstructed evolutionary histories and the wild ancestry contents detected in this study could be used to identify adequate Conservation Units within European wildcat populations and help to design appropriate long-term management actions.

2.
Animals (Basel) ; 12(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139288

RESUMO

Non-invasive genetic sampling is a practical tool to monitor pivotal ecological parameters and population dynamic patterns of endangered species. It can be particularly suitable when applied to elusive carnivores such as the Apennine wolf (Canis lupus italicus) and the European wildcat (Felis silvestris silvestris), which can live in overlapping ecological contexts and sometimes share their habitats with their domestic free-ranging relatives, increasing the risk of anthropogenic hybridisation. In this case study, we exploited all the ecological and genetic information contained in a single biological canid faecal sample, collected in a forested area of central Italy, to detect any sign of trophic interactions between wolves and European wildcats or their domestic counterparts. Firstly, the faecal finding was morphologically examined, showing the presence of felid hair and claw fragment remains. Subsequently, total genomic DNA contained in the hair and claw samples was extracted and genotyped, through a multiple-tube approach, at canid and felid diagnostic panels of microsatellite loci. Finally, the obtained individual multilocus genotypes were analysed with reference wild and domestic canid and felid populations to assess their correct taxonomic status using Bayesian clustering procedures. Assignment analyses classified the genotype obtained from the endothelial cells present on the hair sample as a wolf with slight signals of dog ancestry, showing a qi = 0.954 (C.I. 0.780-1.000) to the wolf cluster, and the genotype obtained from the claw as a domestic cat, showing a qi = 0.996 (95% C.I. = 0.982-1.000) to the domestic cat cluster. Our results clearly show how a non-invasive multidisciplinary approach allows the cost-effective identification of both prey and predator genetic profiles and their taxonomic status, contributing to the improvement of our knowledge about feeding habits, predatory dynamics, and anthropogenic hybridisation risk in threatened species.

3.
Sci Rep ; 12(1): 4195, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264717

RESUMO

Intra- and inter-specific gene flow are natural evolutionary processes. However, human-induced hybridization is a global conservation concern across taxa, and the development of discriminant genetic markers to differentiate among gene flow processes is essential. Wolves (Canis lupus) are affected by hybridization, particularly in southern Europe, where ongoing recolonization of historic ranges is augmenting gene flow among divergent populations. Our aim was to provide diagnostic canid markers focused on the long-divergent Iberian, Italian and Dinaric wolf populations, based on existing genomic resources. We used 158 canid samples to select a panel of highly informative single nucleotide polymorphisms (SNPs) to (i) distinguish wolves in the three regions from domestic dogs (C. l. familiaris) and golden jackals (C. aureus), and (ii) identify their first two hybrid generations. The resulting 192 SNPs correctly identified the five canid groups, all simulated first-generation (F1) hybrids (0.482 ≤ Qi ≤ 0.512 between their respective parental groups) and all first backcross (BC1) individuals (0.723 ≤ Qi ≤ 0.827 to parental groups). An assay design and test with invasive and non-invasive canid samples performed successfully for 178 SNPs. By separating natural population admixture from inter-specific hybridization, our reduced panel can help advance evolutionary research, monitoring, and timely conservation management.


Assuntos
Canidae , Lobos , Animais , Canidae/genética , Cães , Fluxo Gênico , Hibridização Genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Lobos/genética
4.
Ecol Evol ; 12(2): e8626, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35222977

RESUMO

In the early 1800s, the European roe deer (Capreolus capreolus) was probably extirpated from Switzerland, due to overhunting and deforestation. After a federal law was enacted in 1875 to protect lactating females and young, and limiting the hunting season, the roe deer successfully recovered and recolonized Switzerland. In this study, we use mitochondrial DNA and nuclear DNA markers to investigate the recolonization and assess contemporary genetic structure in relation to broad topographic features, in order to understand underlying ecological processes, inform future roe deer management strategies, and explore the opportunity for development of forensic traceability tools. The results concerning the recolonization origin support natural, multidirectional immigration from neighboring countries. We further demonstrate that there is evidence of weak genetic differentiation within Switzerland among topographic regions. Finally, we conclude that the genetic data support the recognition of a single roe deer management unit within Switzerland, within which there is a potential for broad-scale geographic origin assignment using nuclear markers to support law enforcement.

5.
BMC Genomics ; 22(1): 473, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34171993

RESUMO

BACKGROUND: Understanding the processes that lead to hybridization of wolves and dogs is of scientific and management importance, particularly over large geographical scales, as wolves can disperse great distances. However, a method to efficiently detect hybrids in routine wolf monitoring is lacking. Microsatellites offer only limited resolution due to the low number of markers showing distinctive allele frequencies between wolves and dogs. Moreover, calibration across laboratories is time-consuming and costly. In this study, we selected a panel of 96 ancestry informative markers for wolves and dogs, derived from the Illumina CanineHD Whole-Genome BeadChip (174 K). We designed very short amplicons for genotyping on a microfluidic array, thus making the method suitable also for non-invasively collected samples. RESULTS: Genotypes based on 93 SNPs from wolves sampled throughout Europe, purebred and non-pedigree dogs, and suspected hybrids showed that the new panel accurately identifies parental individuals, first-generation hybrids and first-generation backcrosses to wolves, while second- and third-generation backcrosses to wolves were identified as advanced hybrids in almost all cases. Our results support the hybrid identity of suspect individuals and the non-hybrid status of individuals regarded as wolves. We also show the adequacy of these markers to assess hybridization at a European-wide scale and the importance of including samples from reference populations. CONCLUSIONS: We showed that the proposed SNP panel is an efficient tool for detecting hybrids up to the third-generation backcrosses to wolves across Europe. Notably, the proposed genotyping method is suitable for a variety of samples, including non-invasive and museum samples, making this panel useful for wolf-dog hybrid assessments and wolf monitoring at both continental and different temporal scales.


Assuntos
Lobos , Animais , Cães , Europa (Continente) , Hibridização Genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Lobos/genética
6.
Sci Rep ; 10(1): 2862, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071323

RESUMO

Anthropogenic hybridization is recognized as a major threat to the long-term survival of natural populations. While identifying F1 hybrids might be simple, the detection of older admixed individuals is far from trivial and it is still debated whether they should be targets of management. Examples of anthropogenic hybridization have been described between wolves and domestic dogs, with numerous cases detected in the Italian wolf population. After selecting appropriate wild and domestic reference populations, we used empirical and simulated 39-autosomal microsatellite genotypes, Bayesian assignment and performance analyses to develop a workflow to detect different levels of wolf x dog admixture. Membership proportions to the wild cluster (qiw) and performance indexes identified two q-thresholds which allowed to efficiently classify the analysed genotypes into three assignment classes: pure (with no or negligible domestic ancestry), older admixed (with a marginal domestic ancestry) and recent admixed (with a clearly detectable domestic ancestry) animals. Based on their potential to spread domestic variants, such classes were used to define three corresponding management categories: operational pure, introgressed and operational hybrid individuals. Our multiple-criteria approach can help wildlife managers and decision makers in more efficiently targeting the available resources for the long-term conservation of species threatened by anthropogenic hybridization.


Assuntos
Conservação dos Recursos Naturais , Genética Populacional , Hibridização Genética/genética , Lobos/genética , Animais , Animais Selvagens/genética , Teorema de Bayes , Cães , Variação Genética/genética , Genótipo , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética
7.
Mol Ecol Resour ; 20(3)2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31925943

RESUMO

The genomic era has led to an unprecedented increase in the availability of genome-wide data for a broad range of taxa. Wildlife management strives to make use of these vast resources to enable refined genetic assessments that enhance biodiversity conservation. However, as new genomic platforms emerge, problems remain in adapting the usually complex approaches for genotyping of noninvasively collected wildlife samples. Here, we provide practical guidelines for the standardized development of reduced single nucleotide polymorphism (SNP) panels applicable for microfluidic genotyping of degraded DNA samples, such as faeces or hairs. We demonstrate how microfluidic SNP panels can be optimized to efficiently monitor European wildcat (Felis silvestris S.) populations. We show how panels can be set up in a modular fashion to accommodate informative markers for relevant population genetics questions, such as individual identification, hybridization assessment and the detection of population structure. We discuss various aspects regarding the implementation of reduced SNP panels and provide a framework that will allow both molecular ecologists and practitioners to help bridge the gap between genomics and applied wildlife conservation.


Assuntos
Animais Selvagens/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Biodiversidade , Biomarcadores/metabolismo , Gatos , Genética Populacional/métodos , Genômica/métodos , Genótipo , Técnicas de Genotipagem/métodos , Hibridização Genética/genética
8.
Sci Rep ; 9(1): 11612, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406125

RESUMO

The survival of indigenous European wildcat (Felis silvestris silvestris) populations can be locally threatened by introgressive hybridization with free-ranging domestic cats. Identifying pure wildcats and investigating the ancestry of admixed individuals becomes thus a conservation priority. We analyzed 63k cat Single Nucleotide Polymorphisms (SNPs) with multivariate, Bayesian and gene-search tools to better evaluate admixture levels between domestic and wild cats collected in Europe, timing and ancestry proportions of their hybrids and backcrosses, and track the origin (wild or domestic) of the genomic blocks carried by admixed cats, also looking for possible deviations from neutrality in their inheritance patterns. Small domestic ancestry blocks were detected in the genomes of most admixed cats, which likely originated from hybridization events occurring from 6 to 22 generations in the past. We identified about 1,900 outlier coding genes with excess of wild or domestic ancestry compared to random expectations in the admixed individuals. More than 600 outlier genes were significantly enriched for Gene Ontology (GO) categories mainly related to social behavior, functional and metabolic adaptive processes (wild-like genes), involved in cognition and neural crest development (domestic-like genes), or associated with immune system functions and lipid metabolism (parental-like genes). These kinds of genomic ancestry analyses could be reliably applied to unravel the admixture dynamics in European wildcats, as well as in other hybridizing populations, in order to design more efficient conservation plans.


Assuntos
Animais Selvagens/genética , Genômica , Hibridização Genética , Animais , Gatos , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Europa (Continente) , Mutação , Polimorfismo de Nucleotídeo Único
9.
Ecol Evol ; 6(1): 3-22, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811770

RESUMO

Extant populations of the European wildcat are fragmented across the continent, the likely consequence of recent extirpations due to habitat loss and over-hunting. However, their underlying phylogeographic history has never been reconstructed. For testing the hypothesis that the European wildcat survived the Ice Age fragmented in Mediterranean refuges, we assayed the genetic variation at 31 microsatellites in 668 presumptive European wildcats sampled in 15 European countries. Moreover, to evaluate the extent of subspecies/population divergence and identify eventual wild × domestic cat hybrids, we genotyped 26 African wildcats from Sardinia and North Africa and 294 random-bred domestic cats. Results of multivariate analyses and Bayesian clustering confirmed that the European wild and the domestic cats (plus the African wildcats) belong to two well-differentiated clusters (average Ф ST = 0.159, r st = 0.392, P > 0.001; Analysis of molecular variance [AMOVA]). We identified from c. 5% to 10% cryptic hybrids in southern and central European populations. In contrast, wild-living cats in Hungary and Scotland showed deep signatures of genetic admixture and introgression with domestic cats. The European wildcats are subdivided into five main genetic clusters (average Ф ST = 0.103, r st = 0.143, P > 0.001; AMOVA) corresponding to five biogeographic groups, respectively, distributed in the Iberian Peninsula, central Europe, central Germany, Italian Peninsula and the island of Sicily, and in north-eastern Italy and northern Balkan regions (Dinaric Alps). Approximate Bayesian Computation simulations supported late Pleistocene-early Holocene population splittings (from c. 60 k to 10 k years ago), contemporary to the last Ice Age climatic changes. These results provide evidences for wildcat Mediterranean refuges in southwestern Europe, but the evolution history of eastern wildcat populations remains to be clarified. Historical genetic subdivisions suggest conservation strategies aimed at enhancing gene flow through the restoration of ecological corridors within each biogeographic units. Concomitantly, the risk of hybridization with free-ranging domestic cats along corridor edges should be carefully monitored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA