Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Virol ; 42024.
Artigo em Inglês | MEDLINE | ID: mdl-38665693

RESUMO

Significant progress has been made in enhancing recombinant adeno-associated virus (rAAV) for clinical investigation. Despite its versatility as a gene delivery platform, the inherent packaging constraint of 4.7 kb imposes restrictions on the range of diseases it can address. In this context, we present findings of an exceptionally compact and long-term promoter that facilitates the expression of larger genes compared to conventional promoters. This compact promoter originated from the genome of the alphaherpesvirus pseudorabies virus, latency-associated promoter 2 (LAP2, 404 bp). Promoter driving an mCherry reporter was packaged into single strand (ss) AAV8 and AAV9 vectors and injected into adult C57BL/6 mice at a dose of 5 × 1011 vg/mouse by single intravenous or intramuscular administration. An ssAAV8 and ssAAV9 vector with elongation factor-1α promoter (EF1α, 1264 bp) was injected side-by-side for comparison. After 400 days, we sacrificed the mice and examined mCherry expression in liver, kidney, heart, lung, spleen, pancreas, skeletal muscle, and brain. We found that LAP2 exhibited robust transgene expression across a wide range of cells and tissues comparable to the larger EF1α, which is currently recognized as a rather potent and ubiquitous promoter. The AAV8-LAP2 and AAV9-LAP2 constructs displayed strong transduction and transcription in liver, kidney, and skeletal muscle on both route of administration. However, no expression was detected in the heart, lung, spleen, pancreas, and brain. The outcomes of our investigation propose the viability of LAP2 for gene therapy applications demanding the expression of large or multiple therapeutic genes following a single viralvector administration.

2.
Gene Ther ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012300

RESUMO

Small promoters capable of driving potent neuron-restricted gene expression are required to support successful brain circuitry and clinical gene therapy studies. However, converting large promoters into functional MiniPromoters, which can be used in vectors with limited capacity, remains challenging. In this study, we describe the generation of a novel version of alphaherpesvirus latency-associated promoter 2 (LAP2), which facilitates precise transgene expression exclusively in the neurons of the mouse brain while minimizing undesired targeting in peripheral tissues. Additionally, we aimed to create a compact neural promoter to facilitate packaging of larger transgenes. Our results revealed that MiniLAP2 (278 bp) drives potent transgene expression in all neurons in the mouse brain, with little to no expression in glial cells. In contrast to the native promoter, MiniLAP2 reduced tropism in the spinal cord and liver. No expression was detected in the kidney or skeletal muscle. In summary, we developed a minimal pan-neuronal promoter that drives specific and robust transgene expression in the mouse brain when delivered intravenously via AAV-PHP.eB vector. The use of this novel MiniPromoter may broaden the range of deliverable therapeutics and improve their safety and efficacy by minimizing the potential for off-target effects.

3.
J Virol Methods ; 314: 114688, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36736702

RESUMO

Adeno-associated virus (AAV) has great potential as a source of treatments for conditions that might respond to potent and ubiquitous transgene expression. However, among its drawbacks, the genetic "payload" of AAV vectors is limited to <4.9 kb and some commonly used gene promoters are sizeable and susceptible to transcriptional silencing. We recently described a short (404 bp), potent, and persistent promoter obtained from the genome of pseudorabies virus (PrV) called alphaherpesvirus latency-associated promoter 2 (LAP2). Here, we evaluated the biodistribution and potency of transgene expression in mouse peripheral tissues in response to local and systemic administration of AAV8-LAP2 and AAV9-LAP2. We found that administration of these vectors resulted in levels of transgene expression that were similar to the larger EF1α promoter. LAP2 drives potent transgene expression in mouse liver and kidney when administered systemically and in skeletal muscle in response to intramuscular delivery. Notably, in skeletal muscle, administration of vectors with LAP2 and EF1α promoters resulted in preferential transduction of myofibers type 2. A direct side-by-side comparison between LAP2 and the EF1α promoter revealed that, despite its smaller size, LAP2 was equally potent to the EF1α promoter and resulted in widespread gene expression after IV and IM administration of AAV8 or AAV9 vectors. Collectively, these findings suggest that constructs that include LAP2 may have the capacity to deliver large therapeutically effective payloads in support of future gene therapy protocols.


Assuntos
Fígado , Músculo Esquelético , Camundongos , Animais , Distribuição Tecidual , Músculo Esquelético/metabolismo , Transgenes , Rim , Vetores Genéticos , Dependovirus/genética , Transdução Genética
4.
Gene Ther ; 30(5): 463-468, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-34176926

RESUMO

Adeno-associated viral (AAV) vectors are an established and safe gene delivery tool to target the nervous system. However, the payload capacity of <4.9 kb limits the transfer of large or multiple genes. Oversized payloads could be delivered by fragmenting the transgenes into separate AAV capsids that are then mixed. This strategy could increase the AAV cargo capacity to treat monogenic, polygenic diseases and comorbidities only if controlled co-expression of multiple AAV capsids is achieved on each transduced cell. We developed a tool to quantify the number of incoming AAV genomes that are co-expressed in the nervous system with single-cell resolution. By using an isogenic mix of three AAVs each expressing single fluorescent reporters, we determined that expression of much greater than 31 AAV genomes per neuron in vitro and 20 genomes per neuron in vivo is obtained across different brain regions including anterior cingulate, prefrontal, somatomotor and somatosensory cortex areas, and cerebellar lobule VI. Our results demonstrate that multiple AAV vectors containing different transgenes or transgene fragments, can efficiently co-express in the same neuron. This tool can be used to design and improve AAV-based interrogation of neuronal circuits, map brain connectivity, and treat genetic diseases affecting the nervous system.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Animais , Camundongos , Transdução Genética , Transgenes , Terapia Genética/métodos , Encéfalo , Dependovirus/genética , Dependovirus/metabolismo , Vetores Genéticos/genética
5.
J Virol Methods ; 309: 114598, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35940276

RESUMO

Adeno-associated virus (AAV) have long been one of the most common and versatile vectors for in vitro and in vivo gene transfer. AAV production protocols are complex and time consuming, one key concern is the recovery and infectivity of viral vector after purification. The buffer used in the storage of AAV at 4 °C and - 80 °C is a crucial factor and methods to improve it have been thoroughly investigated. Viral core facilities have developed formulas using either 0.001% Pluronic F68 or 5% sorbitol in their storage buffers based on the results of this research. Interestingly, few use formulations that include both a non-ionic surfactant and cryopreservative. In this study, AAV9 stored at 4 °C and at - 80 °C in the standard buffers is compared to a buffer that contains 5% glycerol and 0.001% Pluronic F68. By viral genome quantitation with qPCR, all three formulations show the same extent of viral titer loss at 4 °C, while after several cycles of freeze/thaws at - 80 °C, the viral recovery and infectivity in the preparation with both glycerol and Pluronic F68 was most stable compared to the other buffers.


Assuntos
Dependovirus , Poloxâmero , Dependovirus/genética , Vetores Genéticos , Glicerol , Sorbitol , Tensoativos
7.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743148

RESUMO

Pannexin 1 (Panx1) is involved in the spinal central sensitization process in rats with neuropathic pain, but its interaction with well-known, pain-related, ligand-dependent receptors, such as NMDA receptors (NMDAR) and P2X7 purinoceptors (P2X7R), remains largely unexplored. Here, we studied whether NMDAR- and P2X7R-dependent nociceptive signaling in neuropathic rats require the activation of Panx1 channels to generate spinal central sensitization, as assessed by behavioral (mechanical hyperalgesia) and electrophysiological (C-reflex wind-up potentiation) indexes. Administration of either a selective NMDAR agonist i.t. (NMDA, 2 mM) or a P2X7R agonist (BzATP, 150 µM) significantly increased both the mechanical hyperalgesia and the C-reflex wind-up potentiation, effects that were rapidly reversed (minutes) by i.t. administration of a selective pannexin 1 antagonist (10panx peptide, 300 µM), with the scores even reaching values of rats without neuropathy. Accordingly, 300 µM 10panx completely prevented the effects of NMDA and BzATP administered 1 h later, on mechanical hyperalgesia and C-reflex wind-up potentiation. Confocal immunofluorescence imaging revealed coexpression of Panx1 with NeuN protein in intrinsic dorsal horn neurons of neuropathic rats. The results indicate that both NMDAR- and P2X7R-mediated increases in mechanical hyperalgesia and C-reflex wind-up potentiation require neuronal Panx1 channel activation to initiate and maintain nociceptive signaling in neuropathic rats.


Assuntos
Conexinas/metabolismo , Hiperalgesia , Proteínas do Tecido Nervoso/metabolismo , Receptores Purinérgicos P2X7 , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , N-Metilaspartato/metabolismo , Nociceptividade , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Medula Espinal/metabolismo
8.
Curr Protoc ; 2(5): e430, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35616444

RESUMO

Adeno-associated viruses (AAVs) are one of the most widely used types of viral vectors for research and gene therapy. AAV vectors are safe, have a low immunogenic profile, and provide efficient and long-term transgene expression in a variety of tissues and organs targeted by a specific serotype. Despite these unique features, therapeutic applications, as well as basic research studies, of AAVs have been limited by their packaging capacity of less than 5 kb. Multiple strategies have been explored to deliver large genes. One strategy is to split large transgenes into two or three fragments and package them into separate AAV capsids, generating dual or triple AAV vectors. Combining the fragments potentially allows reconstitution of an mRNA transcript containing the complete sequence of transgene in the same cell. The success of AAVs as vectors for the delivery of large or multiple genes depends directly on the efficiency of co-transduction. Here, we describe a method to measure the efficacy of codelivery, quantifying the number of AAV vectors per cell. We detail how to calculate the average number of incoming AAV genomes in neurons, given the distribution of cell fluorescence across in vitro and in vivo experimental models. To validate the method, we simulated a triple AAV strategy using three fluorescent-protein-encoding genes. We provide a general protocol for constructing plasmids and producing and purifying AAV vectors. We also include a protocol for triple AAV vector co-transduction in primary neuronal cultures and mouse brain. The method can be applied to multiple organs and tissues for the treatment of disorders caused by mutations in multiple or large genes. These protocols will be useful for researchers working to develop and improve new gene delivery technologies. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Construction of AAV plasmids and production of AAVs Basic Protocol 2: AAV transduction of primary superior cervical ganglia (SCG) neuronal cultures Basic Protocol 3: Mouse surgery, AAV injection, and tissue collection and processing Basic Protocol 4: Image analysis and AAV genome quantification.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Vetores Genéticos/genética , Camundongos , Neurônios , Transdução Genética
9.
J Vis Exp ; (160)2020 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-32597850

RESUMO

This protocol describes a footpad inoculation model used to study the initiation and development of neuroinflammatory responses during alphaherpesvirus infection in mice. As alphaherpesviruses are main invaders of the peripheral nervous system (PNS), this model is suitable to characterize the kinetics of viral replication, its spread from the PNS to CNS, and associated neuroinflammatory responses. The footpad inoculation model allows virus particles to spread from a primary infection site in the footpad epidermis to sensory and sympathetic nerve fibers that innervate the epidermis, sweat glands, and dermis. The infection spreads via the sciatic nerve to the dorsal root ganglia (DRG) and ultimately through the spinal cord to the brain. Here, a mouse footpad is inoculated with pseudorabies virus (PRV), an alphaherpesvirus closely related to herpes simplex virus (HSV) and varicella-zoster virus (VZV). This model demonstrates that PRV infection induces severe inflammation, characterized by neutrophil infiltration in the footpad and DRG. High concentrations of inflammatory cytokines are subsequently detected in homogenized tissues by ELISA. In addition, a strong correlation is observed between PRV gene and protein expression (via qPCR and IF staining) in DRG and the production of pro-inflammatory cytokines. Therefore, the footpad inoculation model provides a better understanding of the processes underlying alphaherpesvirus-induced neuropathies and may lead to the development of innovative therapeutic strategies. In addition, the model can guide research on peripheral neuropathies, such as multiple sclerosis and associated viral-induced damage to the PNS. Ultimately, it can serve as a cost-effective in vivo tool for drug development.


Assuntos
Alphaherpesvirinae/imunologia , Gânglios Espinais/imunologia , Infecções por Herpesviridae/imunologia , Membro Posterior/virologia , Inflamação/etiologia , Doenças do Sistema Nervoso Periférico/etiologia , Nervo Isquiático/imunologia , Animais , Modelos Animais de Doenças , Gânglios Espinais/virologia , Infecções por Herpesviridae/complicações , Infecções por Herpesviridae/virologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Doenças do Sistema Nervoso Periférico/patologia , Nervo Isquiático/virologia , Replicação Viral
10.
Mol Ther Methods Clin Dev ; 17: 843-857, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32368565

RESUMO

Recombinant adeno-associated viruses (rAAVs) are used as gene therapy vectors to treat central nervous system (CNS) diseases. Despite their safety and broad tropism, important issues need to be corrected such as the limited payload capacity and the lack of small gene promoters providing long-term, pan-neuronal transgene expression in the CNS. Commonly used gene promoters are relatively large and can be repressed a few months after CNS transduction, risking the long-term performance of single-dose gene therapy applications. We used a whole-CNS screening approach based on systemic delivery of AAV-PHP.eB, iDisco+ tissue-clearing and light-sheet microscopy to identify three small latency-associated promoters (LAPs) from the herpesvirus pseudorabies virus (PRV). These promoters are LAP1 (404 bp), LAP2 (498 bp), and LAP1_2 (880 bp). They drive chronic transcription of the virus-encoded latency-associated transcript (LAT) during productive and latent phases of PRV infection. We observed stable, pan-neuronal transgene transcription and translation from AAV-LAPs in the CNS for 6 months post AAV transduction. In several CNS areas, the number of cells expressing the transgene was higher for LAP2 than the large conventional EF1α promoter (1,264 bp). Our data suggest that the LAPs are suitable candidates for viral vector-based CNS gene therapies requiring chronic transgene expression after one-time viral-vector administration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA