Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38392710

RESUMO

In response to the persistent challenge of heavy and noble metal environmental contamination, our research explores a new idea to capture silver through porous spherical silica nanostructures. The aim was realized using microwave radiation at varying power (P = 150 or 800 W) and exposure times (t = 60 or 150 s). It led to the development of a silica surface with enhanced metal-capture capacity. The microwave-assisted silica surface modification influences the notable changes within the carrier but also enforces the crystallization process of silver nanoparticles with different morphology, structure, and chemical composition. Microwave treatment can also stimulate the formation of core-shell bioactive Ag/Ag2CO3 heterojunctions. Due to the silver nanoparticles' sphericity and silver carbonate's presence, the modified nanocomposites exhibited heightened toxicity against common microorganisms, such as E. coli and S. epidermidis. Toxicological assessments, including minimum inhibitory concentration (MIC) and half-maximal inhibitory concentration (IC50) determinations, underscored the efficacy of the nanocomposites. This research represents a significant stride in addressing pollution challenges. It shows the potential of microwave-modified silicas in the fight against environmental contamination. Microwave engineering underscores a sophisticated approach to pollution remediation and emphasizes the pivotal role of nanotechnology in shaping sustainable solutions for environmental stewardship.

2.
Materials (Basel) ; 17(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38399184

RESUMO

The microstructure of the in situ TiC-reinforced composite surface layers developed during laser surface alloying of a ductile cast iron substrate with titanium was related to the solidification conditions in the molten pool. The solidification conditions were estimated using infrared thermography. It was found that the cooling rates of the melt up to about 700 °C/s enable the complete reaction between carbon and the entire amount of titanium introduced into the molten pool. In turn, the cooling rate of about 280 °C/s for the melt containing 8.0 wt% Ti allows the TiC particles to grow in the dendritic form with well-developed secondary arms and a total size of up to 30 µm. For a constant Ti content, the cooling rate of the melt had no effect on the TiC fraction. The increase in the cooling rate elevated the retained austenite fraction in the matrix material, lowering its hardness.

3.
Sci Rep ; 13(1): 21322, 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38044367

RESUMO

The low glass-forming ability of aluminium-based metallic glasses significantly limits their development and preparation. This paper updates the current state of knowledge by presenting the results of structural studies of two newly-developed Al79Ni5Fe5Y11 and Al79Ni11Fe5Y5 alloys with a reduced aluminium content (< 80 at.%). The alloys were produced by conventional casting (ingots) and melt-spinning (ribbons). Structural characterization was carried out for bulk ingots first, and then for the melt-spun ribbons. The ingots possessed a multiphase crystalline structure, as confirmed by X-ray diffraction and scanning electron microscopy observations. The amorphous structure of the melt-spun ribbons was determined by X-ray diffraction and transmission electron microscopy. SEM observations and EDX element maps of the cross-section of melt-spun ribbons indicated a homogeneous elemental composition. Neutron diffraction revealed the presence of nanocrystals in the amorphous matrix of the melt-spun ribbons. DSC data of the melt-spun ribbons showed exothermic events corresponding to the first crystallization at temperatures of 408 °C and 387 °C for Al79Ni5Fe5Y11 and Al79Ni11Fe5Y5, respectively.

4.
Materials (Basel) ; 16(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38068162

RESUMO

In this paper, we present a complete characterization of the microstructural changes that occur in an LPBF AlSi10Mg alloy subjected to various post-processing methods, including equal-channel angular pressing (ECAP), KoBo extrusion, and multi-axial forging. Kikuchi transmission diffraction and transmission electron microscopy were used to examine the microstructures. Our findings revealed that multi-axis forging produced an extremely fine subgrain structure. KoBo extrusion resulted in a practically dislocation-free microstructure. ECAP processing at temperatures between 100 °C and 200 °C generated moderate grain refinement, with subgrain diameters averaging from 300 nm to 700 nm. The obtained data highlighted the potential of severe plastic deformation as a versatile method for tailoring the microstructure of the AlSi10Mg alloy. The ability to precisely control grain size and dislocation density using specific SPD methods allows for the development of novel materials with ultrafine-grained microstructures that offer the potential for enhanced mechanical and functional properties.

5.
Materials (Basel) ; 16(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37374476

RESUMO

In this work, we used an AlSi10Mg alloy produced by selective laser melting (SLM) to study the effects of build direction and deformation temperature on the grain refinement process. Two different build orientations of 0° and 90° and deformation temperatures of 150 °C and 200 °C were selected to study this effect. Light microscopy, electron backscatter diffraction and transmission electron microscopy were used to investigate the microtexture and microstructural evolution of the laser powder bed fusion (LPBF) billets. Grain boundary maps showed that the proportion of low-angle grain boundaries (LAGBs) dominated in every analysed sample. It was also found that different thermal histories caused by the change in build direction resulted in microstructures with different grain sizes. In addition, EBSD maps revealed heterogeneous microstructures comprising equiaxed fine-grained zones with ≈0.6 µm grain size and coarse-grained zones with ≈10 µm grain size. From the detailed microstructural observations, it was found that the formation of a heterogeneous microstructure is closely related to the increased fraction of melt pool borders. The results presented in this article confirm that the build direction has a significant influence on the microstructure evolution during the ECAP process.

6.
Microbiol Res ; 274: 127395, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37327605

RESUMO

Recent advances in nanotechnology and development of nanoformulation methods, has enabled the emergence of precision farming - a novel farming method that involves nanopesticides and nanoferilizers. Zinc-oxide nanoparticles serve as a Zn source for plants, but they are also used as nanocarriers for other agents, whereas copper-oxide nanoparticles possess antifungal activity, but in some cases may also serve as a micronutrient providing Cu ions. Excessive application of metal-containing agents leads to their accumulation in soil, where they pose a threat to non-target soil organisms. In this study, soils obtained from the environment were amended with commercial zinc-oxide nanoparticles: Zn-OxNPs(10-30), and newly-synthesized copper-oxide nanoparticles: Cu-OxNPs(1-10). Nanoparticles (NPs) in 100 and 1000 mg kg-1 concentrations were added in separate set-ups, representing a soil-microorganism-nanoparticle system in a 60-day laboratory mesocosm experiment. To track environmental footprint of NPs on soil microorganisms, a Phospholipd Fatty Acid biomarker analysis was employed to study microbial community structure, whereas Community-Level Physiological Profiles of bacterial and fungal fractions were measured with Biolog Eco and FF microplates, respectively. The results revealed a prominent and persistent effects exerted by copper-containing nanoparticles on non-target microbial communities. A severe loss of Gram-positive bacteria was observed in conjunction with disturbances in bacterial and fungal CLPPs. These effects persisted till the end of a 60-day experiment, demonstrating detrimental rearrangements in microbial community structure and functions. The effects imposed by zinc-oxide NPs were less pronounced. As persistent changes were observed for newly synthesized Cu-containing NPs, this work stresses the need for obligatory testing of nanoparticle interactions with non-target microbial communities in long-term experiments, especially during the approval procedures of novel nano-substances. It also underlines the role of in-depth physical and chemical studies of NP-containing agents, which may be tweaked to mitigate the unwanted behavior of such substances in the environment and preselect their beneficial characteristics.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Poluentes do Solo , Óxido de Zinco , Solo/química , Cobre/farmacologia , Bactérias , Zinco/farmacologia , Nanopartículas Metálicas/química
7.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047604

RESUMO

Heavy metals and other organic pollutants burden the environment, and their removal or neutralization is still inadequate. The great potential for development in this area includes porous, spherical silica nanostructures with a well-developed active surface and open porosity. In this context, we modified the surface of silica spheres using a microwave field (variable power and exposure time) to increase the metal uptake potential and build stable bioactive Ag2O/Ag2CO3 heterojunctions. The results showed that the power of the microwave field (P = 150 or 700 W) had a more negligible effect on carrier modification than time (t = 60 or 150 s). The surface-activated and silver-loaded silica carrier features like morphology, structure, and chemical composition correlate with microbial and antioxidant enzyme activity. We demonstrated that the increased sphericity of silver nanoparticles enormously increased toxicity against E. coli, B. cereus, and S. epidermidis. Furthermore, such structures negatively affected the antioxidant defense system of E. coli, B. cereus, and S. epidermidis through the induction of oxidative stress, leading to cell death. The most robust effects were found for nanocomposites in which the carrier was treated for an extended period in a microwave field.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Dióxido de Silício/química , Prata/química , Porosidade , Testes de Sensibilidade Microbiana , Micro-Ondas , Escherichia coli , Antioxidantes/farmacologia , Nanopartículas Metálicas/química , Nanocompostos/química , Antibacterianos/farmacologia
8.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902156

RESUMO

The paper introduces spatially stable Ni-supported bimetallic catalysts for CO2 methanation. The catalysts are a combination of sintered nickel mesh or wool fibers and nanometal particles, such as Au, Pd, Re, or Ru. The preparation involves the nickel wool or mesh forming and sintering into a stable shape and then impregnating them with metal nanoparticles generated by a silica matrix digestion method. This procedure can be scaled up for commercial use. The catalyst candidates were analyzed using SEM, XRD, and EDXRF and tested in a fixed-bed flow reactor. The best results were obtained with the Ru/Ni-wool combination, which yields nearly 100% conversion at 248 °C, with the onset of reaction at 186 °C. When we tested this catalyst under inductive heating, the highest conversion was observed already at 194 °C.


Assuntos
Dióxido de Carbono , Níquel , Calefação , Dióxido de Silício
9.
Molecules ; 27(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36296674

RESUMO

The chemical stability and adsorptive/catalytic properties of the most widely studied metal-organic framework (MOF), which is HKUST-1, can be improved by its combination with graphene oxide (GO) or reduced graphene oxide (rGO). The chemistry of GO or rGO surfaces has a significant impact on their interaction with MOFs. In this work, we demonstrate that GO and rGO interaction with HKUST-1 influences the morphology and textural properties but has no impact on the thermal stability of the final composites. We also show that synthesis environment, e.g., stirring, to some extent influences the formation of HKUST-1/GO and HKUST-1/rGO composites. Homogeneous samples of the sandwich-type composite can be obtained when using reduced graphene oxide decorated with copper (Cu/rGO), which, owing to the presence of Cu sites, allows the direct crystallisation of HKUST-1 and its further growth on the graphene surface. This work is the first part of our research on HKUST-1/GO and HKUST-1/rGO and deals with the influence of the type of graphene material and synthesis parameters on the composites' physicochemical properties that were determined by using X-ray diffraction, scanning and transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis.


Assuntos
Grafite , Estruturas Metalorgânicas , Grafite/química , Cobre
10.
Materials (Basel) ; 15(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36079493

RESUMO

Ceramic injection moulding and gas-pressure infiltration were employed for the manufacturing of alumina/AlSi10Mg composites. Porous ceramic preforms were prepared by mixing alumina powder with a multi-binder system and injection moulding the powder polymer slurry. Then, the organic part was removed through a combination of solvent and thermal debinding, and, finally, the materials were sintered at different temperatures. Degrading the binder enabled open canals to form. The sintering process created a porous ceramic material consisting of alumina without any residual carbon content. During infiltration, the liquid metal filled the empty spaces (pores) effectively and formed a three-dimensional network of metal in the ceramic. The microstructure and properties of the manufactured materials were examined using high-resolution transmission electron microscopy, porosimetry, and bending strength testing. Microscopy observations showed that the fabricated composite materials are characterised by a percolation type of microstructure and a lack of unfilled pores. The research confirmed the diversified nature of the connection at the particle-matrix interface. It was observed that the interphase boundary was characterised by the lack of a transition zone between the components or a continuous transition zone, with the thickness not exceeding 30 nm. Thanks to their increased mechanical properties and low density, the obtained composites could be used in the automotive industry as a material for small piston rings and rods, connecting rods, or even gears.

11.
Materials (Basel) ; 15(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35806498

RESUMO

The article presents the assessment of solutions and dried residues precipitated from solutions after the bioleaching process of Printed Circuit Boards (PCB) utilizing the Acidithiobacillus ferrooxidans. The obtained dried residues precipitated from bioleaching solution (leachate) and control solution were tested using morphology, phase, and chemical composition analysis, with particular emphasis on the assessment of crystalline and amorphous components. The analysis of the dried residues from leachate after bioleaching as well as those from the sterile control solution demonstrated a difference in the component oxidation-the leachate consisted of mainly amorphous spherical particles in diameter up to 200 nm, forming lacy aggregates. In the specimenform control solution larger particles (up to 500 nm) were observed with a hollow in the middle and crystalline outer part (probably Fe2O3, CuFeS2, and Cu2O). The X-ray diffraction phase analysis revealed that specimen obtained from leachate after bioleaching consisted mainly of an amorphous component and some content of Fe2O3 crystalline phase, while the dried residue from control solution showed more crystalline components. The share of the crystalline and amorphous components can be related to efficiency in dissolving metals during bioleaching. Obtained results of the investigation confirm the activity and participation of the A. ferrooxidans bacteria in the solubilization process of electro-waste components, with their visible degradation-acceleration of the reaction owing to a continuous regeneration of the leaching medium. The performed investigations allowed to characterize the specimen from leachate and showed that the application of complementary cross-check of the micro (SEM and S/TEM) and macro (ICP-OES and XRD) methods are of immense use for complete guidance assessment and obtained valuable data for the next stages of PCBs recycling.

12.
Polymers (Basel) ; 14(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35745908

RESUMO

The main aim of this research was the preparation of a polymer-ceramic composite with PA-12 as the polymer matrix and modified aluminosilicate cenospheres (CSs) as the ceramic filler. The CSs were subjected to an early purification and cleaning process, which was also taken as a second objective. The CSs were surface modified by a two-step process: (1) etching in Piranha solution and (2) silanization in 3-aminopropyltriethoxysilane. The composite was made for 3D printing by FDM. Raw and modified CSs and a composite with PA-12 were subjected to the following tests: surface development including pores (BET), real density (HP), chemical composition and morphology (SEM/EDS, FTIR), grain analysis (PSD), phase composition (XRD), hardness (HV), and static tensile tests. The composites were subjected to soaking under simulated body fluid (SBF) conditions in artificial saliva for 14, 21, and 29 days. Compared to pure PA-12, PA-12_CS had generally better mechanical properties and was more resistant to SBF at elevated temperatures and soaking times. These results showed this material has potential for use in biomedical applications. These results also showed the necessity of developing a kinetic aging model for aging in different liquids to verify the true value of this material.

13.
Materials (Basel) ; 15(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269148

RESUMO

A high-power direct diode laser (HPDDL) having a rectangular beam with a top-hat intensity distribution was used to produce surface-hardened layers on a ferrous alloy. The thermal conditions in the hardened zone were estimated by using numerical simulations and infrared (IR) thermography and then referred to the thickness and microstructure of the hardened layers. The microstructural characteristics of the hardened layers were investigated using optical, scanning electron and transmission electron microscopy together with X-ray diffraction. It was found that the major factor that controls the thickness of the hardened layer is laser power density, which determines the optimal range of the traverse speed, and in consequence the temperature distribution in the hardened zone. The increase in the cooling rate led to the suppression of the martensitic transformation and a decrease in the hardened layer hardness. The precipitation of the nanometric plate-like and spherical cementite was observed throughout the hardened layer.

14.
Microsc Microanal ; : 1-8, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35105419

RESUMO

Advanced High-Strength Steels (AHSSs) are one of the most rapidly developing group of Fe-based metallic materials. Their excellent combination of high strength, ductility and formability is due to their complex microstructure and strain-induced martensitic transformation of metastable retained austenite (RA), which favors extra ductility of the sheet steels. A deformation temperature is one of the most important factors affecting the phase transformation behavior in these Fe­C­Mn­Al­Si systems. Therefore, the present study aimed at understanding the temperature-dependent phase transformations and structural phenomena in an advanced medium-Mn­Al-alloyed steel. The 3Mn steel was thermomechanically processed and subjected to tensile testing in a temperature range from 20°C to 200°C. The different extent of the strain-induced martensitic transformation and some softening phenomena of bainitic ferrite matrix were revealed using transmission electron microscopy and electron backscatter diffraction techniques. It was found that the thermal stability of RA is strongly dependent on the deformation temperature. Moreover, the dynamic recovery and carbide precipitation play a key role when the deformation temperature is increased to 140°C and higher temperatures.

15.
Materials (Basel) ; 14(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34772179

RESUMO

This paper describes the effect of calcination temperature on the phase composition, chemical composition, and morphology of ZrO2 and Al2O3 powders modified with 3-aminopropyltriethoxysilane (APTES). Both ceramic powders were modified by etching in piranha solution, neutralization in ammonia water, reaction with APTES, ultrasonication, and finally calcination at 250, 350, or 450 °C. The obtained modified powders were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, particle size distribution (PSD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDS), and thermogravimetric analysis (TGA).

16.
Materials (Basel) ; 14(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34683792

RESUMO

This work aimed to prepare a composite with a polyamide (PA) matrix and surface-modified ZrO2 or Al2O3 to be used as ceramic fillers (CFs). Those composites contained 30 wt.% ceramic powder to 70 wt.% polymer. Possible applications for this type of composite include bioengineering applications especially in the fields of dental prosthetics and orthopaedics. The ceramic fillers were subjected to chemical surface modification with Piranha Solution and suspension in 10 M sodium hydroxide and Si3N4 to achieve the highest possible surface development and to introduce additional functional groups. This was to improve the bonding between the CFs and the polymer matrix. Both CFs were examined for particle size distribution (PSD), functional groups (FTIR), chemical composition (XPS), phase composition (XRD), and morphology and chemical composition (SEM/EDS). Filaments were created from the powders prepared in this way and were then used for 3D FDM printing. Samples were subjected to mechanical tests (tensility, hardness) and soaking tests in a high-pressure autoclave in artificial saliva for 14, 21, and 29 days.

17.
Materials (Basel) ; 14(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923676

RESUMO

Cobalt-chromium-molybdenum alloys samples were obtained by the powder injection molding method (PIM). PIM is dedicated to the mass production of components and can manufacture several grades of dental screws, bolts, stabilizers, or implants. As a skeleton component, ethylene-vinyl acetate (EVA copolymer) with a low temperature of processing and softening point was used. The choice of a low-temperature binder made it necessary to use a coarse ceramic powder as a mechanical support of the green sample during sintering. The injection-molded materials were thermally degraded in N2 or Ar-5%H2 and further sintered in N2-5%H2 or Ar-5%H2 at 1300 or 1350 °C for 30 min. The structure of the obtained samples was characterized by X-ray diffraction and electron microscopy. Mechanical properties, including hardness and three-point bending tests, confirmed that a nitrogen-rich atmosphere significantly increases the bending strength compared to the material manufactured in Ar-5%H2. This is due to the precipitation of numerous fine nitrides and intermetallic phases that strengthen the ductile γ-phase matrix.

18.
Materials (Basel) ; 14(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672744

RESUMO

To date, numerous investigations have shown the beneficial effect of ultrasonic vibration-assisted forming technology due to its influence on the forming load, flow stress, friction condition reduction and the increase of the metal forming limit. Although the immediate occurring force and mean stress reduction are known phenomena, the underlying effects of ultrasonic-based material softening remain an object of current research. Therefore, in this article, we investigate the effect of upsetting with and without the ultrasonic vibrations (USV) on the evolution of the microstructure, stress relaxation and hardness of the AlMg3 aluminum alloy. To understand the process physics, after the UAC (ultrasonic assisted compression), the microstructures of the samples were analyzed by light and electron microscopy, including the orientation imaging via electron backscatter diffraction. According to the test result, it is found that ultrasonic vibration can reduce flow stress during the ultrasonic-assisted compression (UAC) process for the investigated aluminum-magnesium alloy due to the acoustic softening effect. By comparing the microstructures of samples compressed with and without simultaneous application of ultrasonic vibrations, the enhanced shear banding and grain rotation were found to be responsible for grain refinement enhancement. The coupled action of the ultrasonic vibrations and plastic deformation decreased the grains of AlMg3 alloy from ~270 µm to ~1.52 µm, which has resulted in a hardness enhancement of UAC processed sample to about 117 HV.

19.
Nanomaterials (Basel) ; 10(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353198

RESUMO

To solve the problem of human diseases caused by a combination of genetic and environmental factors or by microorganisms, intense research to find completely new materials is required. One of the promising systems in this area is the silver-silica nanocomposites and their derivatives. Hence, silver and silver oxide nanoparticles that were homogeneously distributed within a silica carrier were fabricated. Their average size was d = (7.8 ± 0.3) nm. The organic polymers (carboxymethylcellulose (CMC) and sodium alginate (AS)) were added to improve the biological features of the nanocomposite. The first system was prepared as a silver chlorine salt combination that was immersed on a silica carrier with coagulated particles whose size was d = (44.1 ± 2.3) nm, which coexisted with metallic silver. The second system obtained was synergistically interacted metallic and oxidized silver nanoparticles that were distributed on a structurally defective silica network. Their average size was d = (6.6 ± 0.7) nm. Physicochemical and biological experiments showed that the tiny silver nanoparticles in Ag/SiO2 and Ag/SiO2@AS inhibited E. coli, P. aeruginosa, S. aureus, and L. plantarum's cell growth as well as caused a high anticancer effect. On the other hand, the massive silver nanoparticles of Ag/SiO2@CMC had a weaker antimicrobial effect, although they highly interacted against PANC-1. They also generated reactive oxygen species (ROS) as well as the induction of apoptosis via the p53-independent mechanism.

20.
Materials (Basel) ; 13(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155713

RESUMO

The thermal conditions in the molten pool during the laser surface melting of ductile cast iron EN-GJS-700-2 were estimated by using infrared thermography and thermocouple measurements. The thermal data were then correlated with the microstructure of the melted zone. Additionally, the thermodynamic calculations of a Fe-C-Si alloy system were performed to predict the solidification path of the melted zone. It was found that increasing the cooling rate during solidification of the refined ledeburite eutectic but also suppressed the martensitic transformation. A continuous network of plate-like secondary cementite precipitates and nanometric spherical precipitates of tertiary cementite were observed in regions of primary and eutectic austenite. The solidification of the melted zone terminated with the Liquid → γ-Fe + Fe3C + Fe8Si2C reaction. The hardness of the melted zone was affected by both the fraction of the retained austenite and the morphology of the ledeburite eutectic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA