RESUMO
OBJECTIVES: Psychiatric symptoms occur frequently in people living with human immunodeficiency virus (PLWH), which may affect quality of life, sexual risk behavior, and adherence to antiretroviral therapy (ART). Data from large cohorts are limited, and symptoms are often analyzed in isolation. Therefore, we applied a network analysis to assess the interrelatedness of mental health indicators in a large cohort of PLWH. METHODS: We included 1615 PLWH on ART. Participants reported on the severity of depression, anxiety, impulsivity, substance use, quality of life, sexual risk behavior, and ART adherence. An Ising network model was constructed to analyze interrelations between mental health indicators and connections with clinical consequences. RESULTS: Our network analysis revealed that symptoms of depression, anxiety, and indicators of impulsivity were interrelated. Substance use was prevalent and strongly connected with sexual risk behavior. Quality of life was most strongly connected with symptoms of depression. Unexpectedly, ART adherence did not display connections with any of the mental health indicators. CONCLUSION: In PLWH, the interrelatedness between symptoms of depression and anxiety and indicators of impulsivity is high. Mainly, depressive symptoms seem to impact quality of life, which warrants attention for depression in PLWH. We did not observe evidence for the common assumption that patients suffering from psychiatric symptoms are less adherent to HIV treatment.
Assuntos
Ansiedade , Depressão , Infecções por HIV , Qualidade de Vida , Humanos , Infecções por HIV/psicologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Masculino , Feminino , Adulto , Depressão/epidemiologia , Pessoa de Meia-Idade , Ansiedade/epidemiologia , Adesão à Medicação/estatística & dados numéricos , Saúde Mental , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/psicologia , Comportamento Sexual/psicologia , Comportamento Impulsivo/fisiologia , Assunção de RiscosRESUMO
Autoinflammatory diseases, while having a variety of underlying causes, are mediated by dysfunctional innate immune responses. Therefore, standard treatments target innate cytokines or block their receptors. Despite excellent responses in some patients, first-line treatments fail in others, for reasons which remain to be understood. We studied the effects of IL-37, an anti-inflammatory cytokine, on immune cells using multi-omics profiling of 325 healthy adults. Our findings show that IL-37 is associated with inflammation control and generally reduced immune cell activity. Further, genetic variants in IL37 are associated with impaired trained immunity, a memory phenotype of innate immune cells contributing to autoinflammation. To underpin the medical potential of IL-37, an explorative cohort of seven autoinflammatory disorders was built. In vitro stimulation experiments argue for recombinant IL-37 as a potential therapy in IL-6-, and IL-22-driven conditions. Concluding, IL-37 is highlighted as a cytokine with broad anti-inflammatory functions, implicating its potential as therapeutic intervention.
RESUMO
Trained immunity is a long-lasting change in the responsiveness of innate immune cells, leading to a stronger response upon an unrelated secondary challenge. Epigenetic, transcriptional, and metabolic reprogramming contribute to the development of trained immunity. By investigating the impact of gene variants on trained immunity responses after Bacillus Calmette-Guérin (BCG) vaccination, we identified a strong association between polymorphisms in the RORA gene and BCG-induced trained immunity in PBMCs isolated from healthy human donors. RORα, encoded by the RORA gene in humans, is a nuclear receptor and a transcription factor, regulating genes involved in circadian rhythm, inflammation, cholesterol, and lipid metabolism. We found that natural RORα agonists in the circulation negatively correlate with the strength of trained immunity responses after BCG vaccination. Moreover, pharmacological inhibition of RORα in human PBMCs led to higher cytokine production capacity and boosted trained immunity induction by BCG. Blocking RORα activity also resulted in morphological changes and increased ROS and lactate production of BCG-trained cells. Blocking lactate dehydrogenase A (LDHA) and glycolysis with sodium oxamate reduced the cytokine production capacity of cells trained with a combination of BCG and the RORα agonist. In conclusion, this study highlights the potential role of RORα in trained immunity, and its impact on human vaccination and diseases should be further investigated.
Assuntos
Vacina BCG , Imunidade Inata , Leucócitos Mononucleares , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares , Humanos , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Vacina BCG/imunologia , Imunidade Inata/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Citocinas/metabolismo , Adulto , Masculino , Feminino , Vacinação , Células Cultivadas , Mycobacterium bovis/imunologia , Glicólise/imunologia , Imunidade TreinadaRESUMO
Trained immunity is characterized by histone modifications and metabolic changes in innate immune cells following exposure to inflammatory signals, leading to heightened responsiveness to secondary stimuli. Although our understanding of the molecular regulation of trained immunity has increased, the role of adaptive immune cells herein remains largely unknown. Here, we show that T cells modulate trained immunity via cluster of differentiation 40-tissue necrosis factor receptor-associated factor 6 (CD40-TRAF6) signaling. CD40-TRAF6 inhibition modulates functional, transcriptomic, and metabolic reprogramming and modifies histone 3 lysine 4 trimethylation associated with trained immunity. Besides in vitro studies, we reveal that single-nucleotide polymorphisms in the proximity of CD40 are linked to trained immunity responses in vivo and that combining CD40-TRAF6 inhibition with cytotoxic T lymphocyte antigen 4-immunoglobulin (CTLA4-Ig)-mediated co-stimulatory blockade induces long-term graft acceptance in a murine heart transplantation model. Combined, our results reveal that trained immunity is modulated by CD40-TRAF6 signaling between myeloid and adaptive immune cells and that this can be leveraged for therapeutic purposes.
Assuntos
Antígenos CD40 , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Antígenos CD40/metabolismo , Animais , Fator 6 Associado a Receptor de TNF/metabolismo , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Humanos , Masculino , Transplante de Coração , Imunidade TreinadaRESUMO
Introduction: Immunological non-responders (INR) are people living with HIV (PLHIV) who fail to fully restore CD4+ T-cell counts despite complete viral suppression with antiretroviral therapy (ART). INR are at higher risk for non-HIV related morbidity and mortality. Previous research suggest persistent qualitative defects. Methods: The 2000HIV study (clinical trials NTC03994835) enrolled 1895 PLHIV, divided in a discovery and validation cohort. PLHIV with CD4 T-cell count <350 cells/mm3 after ≥2 years of suppressive ART were defined as INR and were compared to immunological responders (IR) with CD4 T-cell count >500 cells/mm3. Logistic and rank based regression were used to analyze clinical data, extensive innate and adaptive immunophenotyping, and ex vivo monocyte and lymphocyte cytokine production after stimulation with various stimuli. Results: The discovery cohort consisted of 62 INR and 1224 IR, the validation cohort of 26 INR and 243 IR. INR were older, had more advanced HIV disease before starting ART and had more frequently a history of non-AIDS related malignancy. INR had lower absolute CD4+ T-cell numbers in all subsets. Activated (HLA-DR+, CD38+) and exhausted (PD1+) subpopulations were proportionally increased in CD4 T-cells. Monocyte and granulocyte immunophenotypes were comparable. INR lymphocytes produced less IL-22, IFN-γ, IL-10 and IL-17 to stimuli. In contrast, monocyte cytokine production did not differ. The proportions of CD4+CD38+HLA-DR+ and CD4+PD1+ subpopulations showed an inversed correlation to lymphocyte cytokine production. Conclusions: INR compared to IR have hyperactivated and exhausted CD4+ T-cells in combination with lymphocyte functional impairment, while innate immune responses were comparable. Our data provide a rationale to consider the use of anti-PD1 therapy in INR.
Assuntos
Citocinas , Infecções por HIV , Imunossenescência , Humanos , Infecções por HIV/imunologia , Infecções por HIV/tratamento farmacológico , Masculino , Feminino , Citocinas/metabolismo , Pessoa de Meia-Idade , Adulto , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Imunofenotipagem , Fármacos Anti-HIV/uso terapêutico , HIV-1/imunologia , Carga ViralRESUMO
In people living with HIV (PLHIV), integrase strand transfer inhibitors (INSTIs) are part of the first-line combination antiretroviral therapy (cART), while non-nucleoside reverse transcriptase inhibitor (NNRTI)-based regimens are alternatives. Distinct cART regimens may variably influence the risk for non-AIDS comorbidities. We aimed to compare the metabolome and lipidome of INSTI and NNRTI-based regimens. The 2000HIV study includes asymptomatic PLHIV (n = 1646) on long-term cART, separated into a discovery cohort with 730 INSTI and 617 NNRTI users, and a validation cohort encompassing 209 INSTI and 90 NNRTI users. Baseline plasma samples from INSTI and NNRTI users were compared using mass spectrometry-based untargeted metabolomic (n = 500) analysis. Perturbed metabolic pathways were identified using MetaboAnalyst software. Subsequently, nuclear magnetic resonance spectroscopy was used for targeted lipoprotein and lipid (n = 141) analysis. Metabolome homogeneity was observed between the different types of INSTI and NNRTI. In contrast, higher and lower levels of 59 and 45 metabolites, respectively, were found in the INSTI group compared to NNRTI users, of which 77.9% (81/104) had consistent directionality in the validation cohort. Annotated metabolites belonged mainly to 'lipid and lipid-like molecules', 'organic acids and derivatives' and 'organoheterocyclic compounds'. In pathway analysis, perturbed 'vitamin B1 (thiamin) metabolism', 'de novo fatty acid biosynthesis', 'bile acid biosynthesis' and 'pentose phosphate pathway' were detected, among others. Lipoprotein and lipid levels in NNRTIs were heterogeneous and could not be compared as a group. INSTIs compared to individual NNRTI types showed that HDL cholesterol was lower in INSTIs compared to nevirapine but higher in INSTIs compared to doravirine. In addition, LDL size was lower in INSTIs and nevirapine compared to doravirine. NNRTIs show more heterogeneous cardiometabolic effects than INSTIs, which hampers the comparison between these two classes of drugs. Targeted lipoproteomic and lipid NMR spectroscopy showed that INSTI use was associated with a more unfavorable lipid profile compared to nevirapine, which was shifted to a more favorable profile for INSTI when substituting nevirapine for doravirine, with evidently higher fold changes. The cardiovascular disease risk profile seems more favorable in INSTIs compared to NNRTIs in untargeted metabolomic analysis using mass-spectrometry.
Assuntos
Infecções por HIV , Inibidores de Integrase de HIV , Inibidores da Transcriptase Reversa , Humanos , Infecções por HIV/tratamento farmacológico , Inibidores da Transcriptase Reversa/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Inibidores de Integrase de HIV/uso terapêutico , Metaboloma/efeitos dos fármacos , Fármacos Anti-HIV/uso terapêutico , Metabolômica , Estudos de Coortes , Terapia Antirretroviral de Alta AtividadeRESUMO
Immune responses are tightly regulated yet highly variable between individuals. To investigate human population variation of trained immunity, we immunized healthy individuals with Bacillus Calmette-Guérin (BCG). This live-attenuated vaccine induces not only an adaptive immune response against tuberculosis but also triggers innate immune activation and memory that are indicative of trained immunity. We established personal immune profiles and chromatin accessibility maps over a 90-day time course of BCG vaccination in 323 individuals. Our analysis uncovered genetic and epigenetic predictors of baseline immunity and immune response. BCG vaccination enhanced the innate immune response specifically in individuals with a dormant immune state at baseline, rather than providing a general boost of innate immunity. This study advances our understanding of BCG's heterologous immune-stimulatory effects and trained immunity in humans. Furthermore, it highlights the value of epigenetic cell states for connecting immune function with genotype and the environment.
Assuntos
Vacina BCG , Imunidade Treinada , Humanos , Multiômica , Vacinação , Epigênese GenéticaRESUMO
Infections and vaccines can induce enhanced long-term responses in innate immune cells, establishing an innate immunological memory termed trained immunity. Here, we show that monocytes with a trained immunity phenotype, due to exposure to the Bacillus Calmette-Guérin (BCG) vaccine, are characterized by an increased biosynthesis of different lipid mediators (LM) derived from long-chain polyunsaturated fatty acids (PUFA). Pharmacological and genetic approaches show that long-chain PUFA synthesis and lipoxygenase-derived LM are essential for the BCG-induced trained immunity responses of human monocytes. Furthermore, products of 12-lipoxygenase activity increase in monocytes of healthy individuals after BCG vaccination. Grasping the underscoring lipid metabolic pathways contributes to our understanding of trained immunity and may help to identify therapeutic tools and targets for the modulation of innate immune responses.
Assuntos
Vacina BCG , Imunidade Treinada , Humanos , Imunidade Inata , Lipoxigenases , LipídeosRESUMO
Innate immune memory, also called "trained immunity," is a functional state of myeloid cells enabling enhanced immune responses. This phenomenon is important for host defense, but also plays a role in various immune-mediated conditions. We show that exogenously administered sphingolipids and inhibition of sphingolipid metabolizing enzymes modulate trained immunity. In particular, we reveal that acid ceramidase, an enzyme that converts ceramide to sphingosine, is a potent regulator of trained immunity. We show that acid ceramidase regulates the transcription of histone-modifying enzymes, resulting in profound changes in histone 3 lysine 27 acetylation and histone 3 lysine 4 trimethylation. We confirm our findings by identifying single-nucleotide polymorphisms in the region of ASAH1, the gene encoding acid ceramidase, that are associated with the trained immunity cytokine response. Our findings reveal an immunomodulatory effect of sphingolipids and identify acid ceramidase as a relevant therapeutic target to modulate trained immunity responses in innate immune-driven disorders.
Assuntos
Ceramidase Ácida , Imunidade Treinada , Ceramidase Ácida/genética , Ceramidase Ácida/metabolismo , Histonas , Lisina , Esfingolipídeos/genética , Imunidade InataRESUMO
Background: People living with human immunodeficiency virus (PLHIV) are exposed to chronic immune dysregulation, even when virus replication is suppressed by antiretroviral therapy (ART). Given the emerging role of the gut microbiome in immunity, we hypothesized that the gut microbiome may be related to the cytokine production capacity of PLHIV. Methods: To test this hypothesis, we collected metagenomic data from 143 ART-treated PLHIV and assessed the ex vivo production capacity of eight different cytokines [interleukin-1ß (IL-1ß), IL-6, IL-1Ra, IL-10, IL-17, IL-22, tumor necrosis factor, and interferon-γ] in response to different stimuli. We also characterized CD4+ T-cell counts, HIV reservoir, and other clinical parameters. Results: Compared with 190 age- and sex-matched controls and a second independent control cohort, PLHIV showed microbial dysbiosis that was correlated with viral reservoir levels (CD4+ T-cell-associated HIV-1 DNA), cytokine production capacity, and sexual behavior. Notably, we identified two genetically different P. copri strains that were enriched in either PLHIV or healthy controls. The control-related strain showed a stronger negative association with cytokine production capacity than the PLHIV-related strain, particularly for Pam3Cys-incuded IL-6 and IL-10 production. The control-related strain is also positively associated with CD4+ T-cell level. Conclusions: Our findings suggest that modulating the gut microbiome may be a strategy to modulate immune response in PLHIV.
Assuntos
Infecções por HIV , HIV , Humanos , Interleucina-10 , Interleucina-6 , Disbiose , Infecções por HIV/tratamento farmacológico , CitocinasRESUMO
Itaconate is an immunomodulatory metabolite produced by immune cells under microbial stimulation and certain pro-inflammatory conditions and triggers antioxidant and anti-inflammatory responses. We show that dimethyl itaconate, a derivative of itaconate previously linked to suppression of inflammation and widely employed as an alternative to the endogenous metabolite, can induce long-term transcriptional, epigenomic, and metabolic changes, characteristic of trained immunity. Dimethyl itaconate alters glycolytic and mitochondrial energetic metabolism, ultimately leading to increased responsiveness to microbial ligand stimulation. Subsequently, mice treated with dimethyl itaconate present increased survival to infection with Staphylococcus aureus. Additionally, itaconate levels in human plasma correlate with enhanced ex vivo pro-inflammatory cytokine production. Collectively, these findings demonstrate that dimethyl itaconate displays short-term anti-inflammatory characteristics and the capacity to induce long-term trained immunity. This pro-and anti-inflammatory dichotomy of dimethyl itaconate is likely to induce complex immune responses and should be contemplated when considering itaconate derivatives in a therapeutic context.
Assuntos
Imunidade Inata , Macrófagos , Camundongos , Humanos , Animais , Macrófagos/metabolismo , Anti-Inflamatórios/metabolismoRESUMO
Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.
Assuntos
Antifúngicos , Candidíase , Animais , Camundongos , Complemento C5/metabolismo , Fagócitos/metabolismoRESUMO
OBJECTIVE: Basic calcium phosphate (BCP) crystals can activate the NLRP3 inflammasome and are potentially involved in the pathogenesis of osteoarthritis (OA). In order to elucidate relevant inflammatory mechanisms in OA, we used a functional genomics approach to assess genetic variation influencing BCP crystal-induced cytokine production. METHOD: Peripheral blood mononuclear cells (PBMCs) were isolated from healthy volunteers who were previously genotyped and stimulated with BCP crystals and/or lipopolysaccharide (LPS) after which cytokines release was assessed. Cytokine quantitative trait locus (cQTL) mapping was performed. For in vitro validation of the cQTL located in anoctamin 3 (ANO3), PBMCs were incubated with Tamoxifen and Benzbromarone prior to stimulation. Additionally, we performed co-localisation analysis of our top cQTLs with the most recent OA meta-analysis of genome-wide association studies (GWAS). RESULTS: We observed that BCP crystals and LPS synergistically induce IL-1ß in human PBMCs. cQTL analysis revealed several suggestive loci influencing cytokine release upon stimulation, among which are quantitative trait locus annotated to ANO3 and GLIS3. As functional validation, anoctamin inhibitors reduced IL-1ß release in PBMCs after stimulation. Co-localisation analysis showed that the GLIS3 locus was shared between LPS/BCP crystal-induced IL-1ß and genetic association with Knee OA. CONCLUSIONS: We identified and functionally validated a new locus, ANO3, associated with LPS/BCP crystal-induced inflammation in PBMCs. Moreover, the cQTL in the GLIS3 locus co-localises with the previously found locus associated with Knee OA, suggesting that this Knee OA locus might be explained through an inflammatory mechanism. These results form a basis for further exploration of inflammatory mechanisms in OA.
Assuntos
Osteoartrite do Joelho , Locos de Características Quantitativas , Humanos , Receptor 4 Toll-Like/genética , Leucócitos Mononucleares , Estudo de Associação Genômica Ampla , Lipopolissacarídeos , Fosfatos de Cálcio/farmacologia , Inflamação/genética , Genômica , AnoctaminasRESUMO
BACKGROUNDPeople living with HIV (PLHIV) receiving antiretroviral therapy (ART) exhibit persistent immune dysregulation and microbial dysbiosis, leading to development of cardiovascular diseases (CVDs). We initially compared plasma proteomic profiles between 205 PLHIV and 120 healthy control participants (HCs) and validated the results in an independent cohort of 639 PLHIV and 99 HCs. Differentially expressed proteins (DEPs) were then associated to microbiome data. Finally, we assessed which proteins were linked with CVD development in PLHIV.METHODSProximity extension assay technology was used to measure 1,472 plasma proteins. Markers of systemic inflammation (C-reactive protein, D-dimer, IL-6, soluble CD14, and soluble CD163) and microbial translocation (IFABP) were measured by ELISA, and gut bacterial species were identified using shotgun metagenomic sequencing. Baseline CVD data were available for all PLHIV, and 205 PLHIV were recorded for development of CVD during a 5-year follow-up.RESULTSPLHIV receiving ART had systemic dysregulation of protein concentrations, compared with HCs. Most of the DEPs originated from the intestine and lymphoid tissues and were enriched in immune- and lipid metabolism-related pathways. DEPs originating from the intestine were associated with specific gut bacterial species. Finally, we identified upregulated proteins in PLHIV (GDF15, PLAUR, RELT, NEFL, COL6A3, and EDA2R), unlike most markers of systemic inflammation, associated with the presence and risk of developing CVD during 5-year follow-up.CONCLUSIONOur findings suggest a systemic dysregulation of protein concentrations in PLHIV; some proteins were associated with CVD development. Most DEPs originated from the gut and were related to specific gut bacterial species.TRIAL REGISTRATIONClinicalTrials.gov NCT03994835.FUNDINGAIDS-fonds (P-29001), ViiV healthcare grant (A18-1052), Spinoza Prize (NWO SPI94-212), European Research Council (ERC) Advanced grant (grant 833247), and Indonesia Endowment Fund for Education.
Assuntos
Doenças Cardiovasculares , Infecções por HIV , Humanos , Proteômica , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Inflamação/complicações , Proteína C-ReativaRESUMO
HIV-1 reservoir shows high variability in size and activity among virally suppressed individuals. Differences in the size of the viral reservoir may relate to differences in plasma protein concentrations. We tested whether plasma protein expression levels are associated with levels of cell-associated (CA) HIV-1 DNA and RNA in 211 virally suppressed people living with HIV (PLHIV). Plasma concentrations of FOLR1, IL1R1, MICA, and FETUB showed a positive association with CA HIV-1 RNA and DNA. Moreover, SNPs in close proximity to IL1R1 and MICA genes were found to influence the levels of CA HIV-1 RNA and DNA. We found a difference in mRNA expression of the MICA gene in homozygotes carrying the rs9348866-A allele compared to the ones carrying the G allele (p < 0.005). Overall, our findings pinpoint plasma proteins that could serve as potential targets for therapeutic interventions to lower or even eradicate cells containing CA HIV-1 RNA and DNA in PLHIV.
RESUMO
Genetic variation is a key factor influencing cytokine production capacity, but which genetic loci regulate cytokine production before and after vaccination, particularly in African population is unknown. Here, we aimed to identify single-nucleotide polymorphisms (SNPs) controlling cytokine responses after microbial stimulation in infants of West-African ancestry, comprising of low-birth-weight neonates randomized to bacillus Calmette-Guérin (BCG) vaccine-at-birth or to the usual delayed BCG. Genome-wide cytokine cytokine quantitative trait loci (cQTL) mapping revealed 12 independent loci, of which the LINC01082-LINC00917 locus influenced more than half of the cytokine-stimulation pairs assessed. Furthermore, nine distinct cQTLs were found among infants randomized to BCG. Functional validation confirmed that several complement genes affect cytokine response after BCG vaccination. We observed a limited overlap of common cQTLs between the West-African infants and cohorts of Western European individuals. These data reveal strong population-specific genetic effects on cytokine production and may indicate new opportunities for therapeutic intervention and vaccine development in African populations.
Assuntos
Vacina BCG , Citocinas , Recém-Nascido , Lactente , Humanos , Criança , Vacina BCG/genética , Citocinas/genética , África Ocidental , VacinaçãoRESUMO
The reprogramming of cellular metabolism of immune cells is an essential process in the regulation of antifungal immune responses. In particular, glucose metabolism has been shown to be required for protective immunity against infection with Aspergillus fumigatus. However, given the intricate cross talk between multiple metabolic networks and signals, it is likely that cellular metabolic pathways other than glycolysis are also relevant during fungal infection. In this study, we demonstrate that glutamine metabolism is required for the activation of macrophage effector functions against A. fumigatus. Glutamine metabolism was found to be upregulated early after fungal infection and glutamine depletion or the pharmacological inhibition of enzymes involved in its metabolism impaired phagocytosis and the production of both proinflammatory and T-cell-derived cytokines. In an in vivo model, inhibition of glutaminase increased susceptibility to experimental aspergillosis, as revealed by the increased fungal burden and inflammatory pathology, and the defective cytokine production in the lungs. Moreover, genetic variants in glutamine metabolism genes were found to regulate cytokine production in response to A. fumigatus stimulation. Taken together, our results demonstrate that glutamine metabolism represents an important component of the immunometabolic response of macrophages against A. fumigatus both in vitro and in vivo. IMPORTANCE The fungal pathogen Aspergillus fumigatus can cause severe and life-threatening forms of infection in immunocompromised patients. The reprogramming of cellular metabolism is essential for innate immune cells to mount effective antifungal responses. In this study, we report the pivotal contribution of glutaminolysis to the host defense against A. fumigatus. Glutamine metabolism was essential both in vitro as well as in in vivo models of infection, and genetic variants in human glutamine metabolism genes regulated cytokine production in response to fungal stimulation. This work highlights the relevance of glutaminolysis to the pathogenesis of aspergillosis and supports a role for interindividual genetic variation influencing glutamine metabolism in susceptibility to infection.
Assuntos
Aspergilose , Aspergillus fumigatus , Humanos , Aspergillus fumigatus/genética , Glutamina , Antifúngicos , Aspergilose/microbiologia , Citocinas/metabolismoRESUMO
Background: People living with HIV (PLHIV) exhibit dysregulation of tryptophan metabolism. Altered gut microbiome composition in PLHIV might be involved. Mechanistic consequences within the 3 major tryptophan metabolism pathways (serotonin, kynurenine, and indoles), and functional consequences for platelet, immune and behavioral functions are unknown. We investigated plasma tryptophan metabolites, gut microbiome composition, and their association with platelet function, inflammation, and psychiatric symptoms. Methods: This study included 211 PLHIV on long-term antiretroviral treatment (ART). Plasma tryptophan pathway metabolites were measured using time-of-flight mass spectrometry. Bacterial composition was profiled using metagenomic sequencing. Platelet reactivity and serotonin levels were quantified by flowcytometry and ELISA, respectively. Circulating inflammatory markers were determined using ELISA. Symptoms of depression and impulsivity were measured by DASS-42 and BIS-11 self-report questionnaires, respectively. Results: Plasma serotonin and indole metabolites were associated with gut bacterial composition. Notably, species enriched in PLHIV were associated with 3-methyldioxyindole. Platelet serotonin concentrations were elevated in PLHIV, without effects on platelet reactivity. Plasma serotonin and indole metabolites were positively associated with plasma IL-10 and TNF-α concentrations. Finally, higher tryptophan, serotonin, and indole metabolites were associated with lower depression and anxiety, whereas higher kynurenine metabolites were associated with increased impulsivity. Conclusion: Our results suggest that gut bacterial composition and dysbiosis in PLHIV on ART contribute to tryptophan metabolism, which may have clinical consequences for immune function and behavior.
RESUMO
Despite antiretroviral therapy (ART), people living with HIV (PLHIV) display persistent inflammation leading to non-AIDS-related co-morbidities. To better understand underlying mechanisms, we compared targeted plasma inflammatory protein concentration (n = 92) between a cohort of 192 virally suppressed PLHIV, who were followed-up for five years, and 416 healthy controls (HC). Findings were validated in an independent cohort of 649 virally suppressed PLHIV and 98 HC. Compared to HC, PLHIV exhibited distinctively upregulated inflammatory proteins, including mucosal defense chemokines, CCR5 and CXCR3 ligands, and growth factors. Unsupervised clustering of inflammatory proteins clearly differentiated PLHIV with low (n = 123) and high inflammation (n = 65), the latter having a 3.4 relative risk (95% confidence interval 1.2-9.8) to develop malignancies and trend for cardiovascular events during a 5-year follow-up. The best protein predictors discriminating the two inflammatory endotypes were PD-L1, VEGFA, LAP TGF ß-1, and TNFRSF9. Our data provide insights into co-morbidities associated inflammatory changes in PLHIV on long-term ART.
RESUMO
Trained immunity describes the capacity of innate immune cells to develop heterologous memory in response to certain exogenous exposures. This phenomenon mediates, at least in part, the beneficial off-target effects of the BCG vaccine. Using an in vitro model of trained immunity, we show that BCG exposure induces a persistent change in active histone modifications, DNA methylation, transcription, and adenosine-to-inosine RNA modification in human monocytes. By profiling DNA methylation of circulating monocytes from infants in the MIS BAIR clinical trial, we identify a BCG-associated DNA methylation signature that persisted more than 12 months after neonatal BCG vaccination. Genes associated with this epigenetic signature are involved in viral response pathways, consistent with the reported off-target protection against viral infections in neonates, adults, and the elderly. Our findings indicate that the off-target effects of BCG in infants are accompanied by epigenetic remodeling of circulating monocytes that lasts more than 1 year.